BIG Ideas

- Make conjectures, determine whether a statement is true or false, and find counterexamples for statements.
- Use deductive reasoning to reach valid conclusions.
- Verify algebraic and geometric conjectures using informal and formal proof.
- Write proofs involving segment and angle theorems.

Key Vocabulary

inductive reasoning (p. 78)
deductive reasoning (p. 99)
postulate (p. 105)
theorem (p. 106)
proof (p. 106)

Reasoning and Proof

Real-World Link
Health Professionals Doctors talk with patients and run tests. They analyze the results and use reasoning to diagnose and treat patients.

Foldables
 Bht onymint

Reasoning and Proof Make this Foldable to help you organize your notes. Begin with five sheets of $8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ plain paper.

1) Stack the sheets of paper with edges $\frac{3}{4}$ inch apart. Fold the bottom edges up to create equal tabs.

2 Staple along the fold. Label the top tab with the chapter title. Label the next 8 tabs with lesson numbers. The last tab is for Key Vocabulary.

GET READY for Ohapter 2

Diagnose Readiness You have two options for checking Prerequisite Skills.

Option 1

Option 2

Take the Quick Check below. Refer to the Quick Review for help.

QUICKCheck

Evaluate each expression for the given value of n. (Prerequisite Skill)

1. $3 n-2 ; n=4$
2. $(n+1)+n ; n=6$
3. $n^{2}-3 n ; n=3$
4. $180(n-2) ; n=5$
5. $n\left(\frac{n}{2}\right) ; n=10$
6. $\frac{n(n-3)}{2} ; n=8$
7. Write the expression three more than the square of a number.
8. Write the expression three less than the square of a number and two.

Solve each equation. (Prerequisite Skill)

9. $6 x-42=4 x$
10. $8-3 n=-2+2 n$
11. $3(y+2)=-12+y$
12. $12+7 x=x-18$
13. $3 x+4=\frac{1}{2} x-5$
14. $2-2 x=\frac{2}{3} x-2$
15. MUSIC Mark bought 3 CDs and spent $\$ 24$. Write and solve an equation for the average cost of each CD. (Prerequisite Skill)

For Exercises 16-19, refer to the figure from

 Example 3. (Prerequisite Skill)16. Identify a pair of vertical angles that appear to be acute.
17. Identify a pair of adjacent angles that appear to be obtuse.
18. If $m \angle A G B=4 x+7$ and $m \angle E G D=71$, find x.
19. If $m \angle B G C=45, m \angle C G D=8 x+4$, and $m \angle D G E=15 x-7$, find x.

QU/CKReview

EXAMPLE 1

Evaluate $n^{3}-3 n^{2}+3 n-1$ for $n=1$.
$n^{3}-3 n^{2}+3 n-1 \quad$ Write the expression.
$=(1)^{3}-3(1)^{2}+3(1)-1 \quad$ Substitute 1 for n.
$=1-3(1)+3(1)-1 \quad$ Evaluate the exponents.
$=1-3+3-1 \quad$ Multiply.
$=0 \quad$ Simplify.

EXAMPLE 2

Solve $70 x+140=35 x$.

$$
\begin{aligned}
70 x+140 & =35 x & & \text { Write the equation. } \\
35 x+140 & =0 & & \text { Subtract } 35 x \text { from each side. } \\
35 x & =-140 & & \text { Subtract } 140 \text { from each side. } \\
x & =-4 & & \text { Divide each side by } 35 .
\end{aligned}
$$

EXAMPLE 3

Refer to the figure.

If $m \angle A G E=6 x+2$ and $m \angle B G D=110$, find x.
$\angle A G E$ and $\angle B G D$ are vertical angles.

$$
\begin{aligned}
m \angle A G E & =m \angle B G D & & \text { Vert. } \& \text { are } \cong . \\
6 x+2 & =110 & & \text { Substitution } \\
6 x & =108 & & \text { Subtract } 2 \text { from each side. } \\
x & =18 & & \text { Divide each side by } 6 .
\end{aligned}
$$

2-1

Inductive Reasoning and Conjecture

Main Ideas

- Make conjectures based on inductive reasoning.
- Find counterexamples.

New Vocabulary
conjecture inductive reasoning counterexample

GETREADY for the lesson

People in the ancient Orient developed mathematics to assist in farming, business, and engineering. Documents from that time show that they taught mathematics by showing several examples and looking for a pattern in the solutions. This process is called inductive reasoning.

Make Conjectures A conjecture is an educated guess based on known information. Examining several specific situations to arrive at a conjecture is called inductive reasoning. Inductive reasoning is reasoning that uses a number of specific examples to arrive at a plausible generalization or prediction.

EXAMPLE Patterns and Conjecture

The numbers represented below are called triangular numbers. Make a conjecture about the next triangular number.

Study Tip

Conjectures
List your observations and identify patterns before you make a conjecture.

Observe: Each triangle is formed by adding a row of dots.
Find a Pattern:

The numbers increase by $2,3,4$, and 5 .
Conjecture: The next number will increase by 6 . So, it will be $15+6$ or 21 .

Check: \quad Drawing the next triangle verifies the conjecture.
1)CHECK Your Progress.

1. Make a conjecture about the next term in the sequence $20,16,11,5,-2,-10$.

In Chapter 1, you learned some basic geometric concepts. These concepts can be used to make conjectures in geometry.

EXAMPLE Geometric Conjecture

$(2$ For points P, Q, and $R, P Q=9, Q R=15$, and $P R=12$. Make a conjecture and draw a figure to illustrate your conjecture.

Given: \quad points P, Q, and $R ; P Q=9, Q R=15$, and $P R=12$
Examine the measures of the segments.
Since $P Q+P R \neq Q R$, the points cannot be collinear.
Conjecture: $\quad P, Q$, and R are noncollinear.
Check: \quad Draw $\triangle P Q R$. This illustrates the conjecture.

2CHECK Your Progress:

2. K is the midpoint of $\overline{J L}$. Make a conjecture and draw a figure to illustrate your conjecture.

Find Counterexamples A conjecture based on several observations may be true in most circumstances, but false in others. It takes only one false

Vocabulary Link
Counterexample
Everyday use: the prefix counter- means the opposite of Math use: a counterexample is the opposite of an example example to show that a conjecture is not true. The false example is called a counterexample.

Real-World EXAMPLE

(3) POPULATION Find a counterexample for the following statement based on the graph.

The populations of these U.S. states increased by less than 1 million from 1990 to 2000.
Examine the graph. The statement is true for Idaho, Nevada, and Oregon. However, the populations of Arizona and Washington increased by more than 1 million from 1990 to 2000. Thus, either of these
 increases is a counterexample to the given statement.

CheECK Your Progress:

3. Find a counterexample to the statement The states with a population increase of less than 1 million people increased their population by more than 25% from 1990 to 2000.
[^0]
Your Understanding

Example 1 Make a conjecture about the next item in each sequence.
(p. 78)
1.
 $\triangle \Delta \Delta \square \square \square$
2. $-8,-5,-2,1,4$

Example 2 Make a conjecture based on the given information. Draw a figure to (p. 79) illustrate your conjecture.
3. $P Q=R S$ and $R S=T U$
4. $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect at P.

Example 3 FISHING For Exercises 5 and 6, refer to (p. 79) the graphic and find a counterexample for each statement.
5. The number of youth anglers in a state is less than one-fourth of the total anglers in that state.
6. Each state listed has at least 3,000,000 anglers.

Fishing		
State	Number of Youth Anglers	Percent of Total Anglers per State
California	$1,099,000$	31
Florida	543,000	15
Michigan	452,000	25
North Carolina	353,000	21.5

Source: American Sportfishing Association

Extrises

HOMEWORK	HELP
For	See
Exercises	Examples
$7-16$	1
$17-24$	2
$25-32$	3

Make a conjecture about the next item in each sequence.
7.

9. $1,2,4,8,16$
10. $4,6,9,13,18$
11. $\frac{1}{3}, 1, \frac{5}{3}, \frac{7}{3}, 3$
12. $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$
13. $2,-6,18,-54$
14. $-5,25,-125,625$
15.

16.

Make a conjecture based on the given information. Draw a figure to illustrate your conjecture.
17. Lines ℓ and m are perpendicular.
18. $A(-2,-11), B(2,1), C(5,10)$
19. $\angle 3$ and $\angle 4$ are a linear pair.
20. $\overrightarrow{B D}$ is an angle bisector of $\angle A B C$.
21. $P(-1,7), Q(6,-2), R(6,5)$
22. HIJK is a square.
23. $P Q R S$ is a rectangle.
24. $\angle B$ is a right angle in $\triangle A B C$.

Cross-Curricular Project
pmeren You can use scatter plots to make conjectures about the relationships among latitude, longitude, degree distance, and the monthly high temperature. Visit geometryonline.com to continue work on your project.

Determine whether each conjecture is true or false. Give a counterexample for any false conjecture.
25. Given: $\angle 1$ and $\angle 2$ are complementary angles.

Conjecture: $\angle 1$ and $\angle 2$ form a right angle.
26. Given: $m+y \geq 10, y \geq 4$

Conjecture: $m \leq 6$
27. Given: points W, X, Y, and Z

Conjecture: W, X, Y, and Z are noncollinear.
28. Given: $A(-4,8), B(3,8), C(3,5)$

Conjecture: $\triangle A B C$ is a right triangle.
29. Given: n is a real number.

Conjecture: n^{2} is a nonnegative number.
30. Given: $D E=E F$

Conjecture: E is the midpoint of $\overline{D F}$.
31. HOUSES Most homes in the northern United States have roofs made with steep angles. In the warmer southern states, homes often have flat roofs. Make a conjecture about why the roofs are different.
32. MUSIC Many people learn to play the piano by ear. This means that they first learned how to play without reading music. What process did they use?

CHEMISTRY For Exercises 33-35, use the following information.

Hydrocarbons are molecules composed of only carbon (C) and hydrogen (H) atoms. The simplest hydrocarbons are called alkanes. The first three alkanes are shown below.

Alkanes			
Compound Name	Methane	Ethane	Propane
Chemical Formula	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$
Structural Formula			

33. MAKE A CONJECTURE about butane, which is the next compound in the group. Write its structural formula.
34. Write the chemical formula for the 7 th compound in the group.
35. Develop a rule you could use to find the chemical formula of the nth substance in the alkane group.
36. REASONING Determine whether the following conjecture is always, sometimes, or never true based on the given information. Justify your reasoning.
Given: collinear points D, E, and F
Conjecture: $D E+E F=D F$
37. OPEN ENDED Write a statement. Then find a counterexample for the statement. Justify your reasoning.
38. CHALLENGE The expression $n^{2}-n+41$ has a prime value for $n=1$, $n=2$, and $n=3$. Based on this pattern, you might conjecture that this expression always generates a prime number for any positive integral value of n. Try different values of n to test the conjecture. Answer true if you think the conjecture is always true. Answer false and give a counterexample if you think the conjecture is false. Justify your reasoning.
39. Writing in Math Refer to the information on page 78. Compare the method used to teach mathematics in the ancient Orient to how you have been taught mathematics. Describe any similarities or differences.

STANDARDIZED TEST PRACIICE

40. In the diagram below, $\overrightarrow{A B}$ is an angle bisector of $\angle D A C$.

Which of the following conclusions does not have to be true?

A $\angle D A B \cong \angle B A C$
B $\angle D A C$ is a right angle.
C A and D are collinear.
D $2(m \angle B A C)=m \angle D A C$
41. REVIEW A chemistry student mixed some 30%-copper sulfate solution with some 40%-copper sulfate solution to obtain 100 mL of a 32%-copper sulfate solution. How much of the 30%-copper sulfate solution did the student use in the mixture?

F 90 mL
G 80 mL
H 60 mL
J 20 mL

Spiral Review

42. FISH TANKS Brittany purchased a cylindrical fish tank. The diameter of the base is 8 inches, and it is 12 inches tall. What volume of water will fill the tank? (Lesson 1-7)

Name each polygon by its number of sides and then classify it as convex or concave and regular or not regular. (Lesson 1-6)
43.

44.

45.

GCT READY for the Next Lesson

PREREQUISITE SKILL Determine which values in the replacement set make the inequality true.
46. $x+2>5$
$\{2,3,4,5\}$
47. $12-x<0$
$\{11,12,13,14\}$
48. $5 x+1>25$
$\{4,5,6,7\}$

2-2
 Logic

Main Ideas

- Determine truth values of conjunctions and disjunctions.
- Construct truth tables.

New Vocabulary

statement
truth value negation compound statement conjunction disjunction truth table

GET READY for the Lesson

When you answer true-false questions on a test, you are using a basic principle of logic. For example, refer to the map, and answer true or false.

Frankfort is a city in Kentucky.
You know that there is only one correct answer, either true
 or false.

Determine Truth Values A statement, like the true-false example above, is any sentence that is either true or false, but not both. Unlike a conjecture, we know that a statement is either true or false. The truth or falsity of a statement is called its truth value.

Statements are often represented using a letter such as p or q. The statement above can be represented by p.
p: Frankfort is a city in Kentucky. This statement is true.

The negation of a statement has the opposite meaning as well as an opposite truth value. For example, the negation of the statement above is not p.
not p: Frankfort is not a city in Kentucky. In this case, the statement is false.

Negation
Word If a statement is represented by p, then not p is the negation of the statement.

Symbols $\sim p$, read not p

Two or more statements can be joined to form a compound statement. Consider the following two statements.
p: Frankfort is a city in Kentucky.
q : Frankfort is the capital of Kentucky.
The two statements can be joined by the word and.
p and q : Frankfort is a city in Kentucky, and Frankfort is the capital of Kentucky.

```
KEY CONCEPT
Conjunction
Words A conjunction is a compound statement formed by joining two or more statements with the word and.
Symbols \(p \wedge q\), read \(p\) and \(q\)
```

A conjunction is true only when both statements in it are true. Since it is true that Frankfort is in Kentucky and it is the capital, the conjunction is also true.

EXAMPLE Truth Values of Conjunctions

(1) Use the following statements to write a compound statement for each conjunction. Then find its truth value.
p : January 1 is the first day of the year.
$q:-5+11=-6$
r : A triangle has three sides.
a. p and q

January is the first day of the year, and $-5+11=-6$. p and q is false, because p is true and q is false.
b. $\sim q \wedge r$
$-5+11 \neq-6$, and a triangle has three sides.
$\sim q \wedge r$ is true because $\sim q$ is true and r is true.

CHECK Your Progress

Reading Math

Negations The negation of a statement is not necessarily false. It has the opposite truth value of the original statement.
1A. $r \wedge p$
1B. p and not r

Statements can also be joined by the word or. This type of statement is a disjunction. Consider the following statements.
$p: \quad$ Ahmed studies chemistry.
q : Ahmed studies literature.
p or q : Ahmed studies chemistry, or Ahmed studies literature.

KEY CONCEPT

Disjunction
Words A disjunction is a compound statement formed by joining two or more statements with the word or.

Symbols $p \vee q$, read p or q

A disjunction is true if at least one of the statements is true. In the case of p or q above, the disjunction is true if Ahmed either studies chemistry or literature or both. The disjunction is false only if Ahmed studies neither chemistry nor literature.

EXAMPLE Truth Values of Disjunctions

2 Use the following statements to write a compound statement for each disjunction. Then find its truth value.
$p: 100 \div 5=20$
q : The length of a radius of a circle is twice the length of its diameter.
r : The sum of the measures of the legs of a right triangle equals the measure of the hypotenuse.
a. p or q
$100 \div 5=20$, or the length of a radius of a circle is twice the length of its diameter. p or q is true because p is true. It does not matter that q is false.
b. $q \vee r$

The length of a radius of a circle is twice the length of its diameter, or the sum of the measures of the legs of a right triangle equals the measure of the hypotenuse.
$q \vee r$ is false since neither statement is true.

$12 H E C K$ Your Progress

2. $\sim q \vee r$

Study Tip

Venn Diagrams
The size of the overlapping region in a Venn diagram does not indicate how many items fall into that category.

Reading Math

Intersection and
Union The word intersection means the point at which more than one object overlap. The word union means to group together.

Conjunctions can be illustrated with Venn diagrams. Refer to the statement at the beginning of the lesson. The Venn diagram at the right shows that Frankfort (F) is represented by the intersection of the set of cities in Kentucky and the set of state capitals. In other words, Frankfort is in both the set of cities in Kentucky and in the set
 of state capitals.
A disjunction can also be illustrated with a Venn diagram. Consider the following statements.
$p: \quad$ Jerrica lives in a U.S. state capital.
q : Jerrica lives in a Kentucky city.
$p \vee q$: Jerrica lives in a U.S. state capital, or Jerrica lives in a Kentucky city.
In the Venn diagrams, the disjunction is represented by the union of the two sets. The union includes all U.S. capitals and all cities in Kentucky.
The three regions represent
A U.S. state capitals excluding the capital of Kentucky,
B cities in Kentucky excluding the state capital, and
C the capital of Kentucky, which is Frankfort.

All U.S. Cities

EXAMPLE

Earth could be circled 20 times by the amount of paper produced by American businesses in one day.

Source:

Resourcefulschools.org

3 RECYCLING The Venn diagram shows the number of neighborhoods that have a curbside recycling program for paper or aluminum.
a. How many neighborhoods recycle both paper and aluminum?

The neighborhoods that have paper and aluminum recycling are represented by the intersection of the sets. There are 46 neighborhoods that have paper and aluminum recycling.
b. How many neighborhoods recycle paper or aluminum?

The neighborhoods that have paper or aluminum recycling are represented by the union of the sets. There are $12+46+20$ or 78 neighborhoods that have paper or aluminum recycling.
c. How many neighborhoods recycle paper and not aluminum?

The neighborhoods that have paper and not aluminum recycling are represented by the nonintersecting portion of the paper region. There are 12 neighborhoods that have paper and not aluminum recycling.

3 CHECK Your Progress

3. How many neighborhoods recycle aluminum and not paper?
]ine Personal Tutor at geometryonline.com

Truth Tables A convenient method for organizing the truth values of statements is to use a truth table.

Negation	
p	$\sim p$
T	F
F	T

If p is a true statement, then $\sim p$ is a false statement.
If p is a false statement, then $\sim p$ is a true statement.
Truth tables can also be used to determine truth values of compound statements.

Conjunction		
\mathbf{p}	q	$\boldsymbol{p} \wedge \boldsymbol{q}$
T	T	T
T	F	F
when both		
are true.		

Disjunction		
p	q	$p \vee q$
T	T	T
T	F	T
F	T	T disjunction is
false only when		
both statements		
are false.		
F	F	F

You can use the truth values for negation, conjunction, and disjunction to construct truth tables for more complex compound statements.

EXAMPLE Construct Truth Tables

4 Construct a truth table for each compound statement.
a. $p \wedge \sim q$

Step 1 Make columns with the headings $p, q, \sim q$, and $p \wedge \sim q$.
Step 2 List the possible combinations of truth values for p and q.
Step 3 Use the truth values of q to determine the truth values of $\sim q$.
Step 4 Use the truth values for p and $\sim q$ to write the truth values for $p \wedge \sim q$.

Step $1 \longrightarrow$	P	q	$\sim \boldsymbol{q}$	$p \wedge \sim q$
	T	T	F	F
	T	F	T	T
	F	T	F	F
	F	F	T	F
				$\underset{\text { Step } 4}{\uparrow}$

Study Tip

Truth Tables
Use the Fundamental Counting Principle to determine the number of rows necessary. In Example 4b, there are 2 possible values for each of the three statements, p, q, and r. So there should be $2 \cdot 2 \cdot 2$ or 8 rows in the table.
b. $(p \wedge q) \vee r$

Make columns for $p, q, p \wedge q, r$, and $(p \wedge q) \vee r$.

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \wedge \boldsymbol{q}$	\boldsymbol{r}	$(\boldsymbol{p} \wedge \boldsymbol{q}) \vee \boldsymbol{r}$
T	T	T	T	T
T	F	F	T	T
T	T	T	F	T
T	F	F	F	F
F	T	F	T	T
F	F	F	T	T
F	T	F	F	F
F	F	F	F	F

CHECK Your Progress.

4. $\sim p \vee \sim q$

G/CHECK Your undentanding

Examples 1-2 Use the following statements to write a compound statement for each (pp. 84-85) conjunction and disjunction. Then find its truth value.
$p: 9+5=14$
q : February has 30 days.
r : A square has four sides.

1. p and q
2. $p \wedge r$
3. $q \wedge r$
4. p or $\sim q$
5. $q \vee r$
6. $\sim p \vee \sim r$

AGRICULTURE For Exercises 7-9, refer to the Venn than 100 million bushels of corn or wheat per year.
7. How many states produce more than 100 million bushels of corn?
8. How many states produce more than 100 million bushels of wheat?

Source: U.S. Department of Agriculture
9. How many states produce more than 100 million bushels of corn and wheat?
10. Copy and complete the truth table.

\boldsymbol{p}	\boldsymbol{q}	$\sim \boldsymbol{q}$	$\boldsymbol{p} \vee \sim \boldsymbol{q}$
T	T	F	
T	F		
F	T		
F	F		

Construct a truth table for each compound statement.
11. $p \wedge q$
12. $\sim p \wedge r$

Exercises

HOMEWORK	$H E L P$
For	See
Exercises	Examples
$13-24$	1,2
$25-31$	3
$32-41$	4

Use the following statements to write a compound statement for each conjunction and disjunction. Then find its truth value.
$p: \sqrt{-64}=8$
q : A triangle has three sides.
$r: 0<0$
s : An obtuse angle measures greater than 90 and less than 180.
13. p and q
14. p or q
15. p and $\sim r$
16. r and s
17. q or r
18. q and s
19. $p \wedge s$
20. $\sim q \wedge r$
21. $r \vee p$
22. $s \vee q$
23. $(\sim p \wedge q) \vee s$
24. $s \vee(q \wedge \sim r)$

MUSIC For Exercises 25-28, use the following information.
A group of 400 teens were asked what type of music they listened to. They could choose among pop, rap, and country. The results are shown in the Venn diagram.
25. How many said that they listened to none of these types of music?
26. How many said that they listened to all three types of music?

Music Preference

27. How many said that they listened to only pop and rap music?
28. How many said that they listened to pop, rap, or country music?

Real-World Link
Nationwide, approximately 80% of high school seniors participate in extracurricular activities. Athletics, performing arts, and clubs are the most popular.

Source: National Center for Education Statistics

SCHOOL For Exercises 29-31, use the following information.

In a school of 310 students, 80 participate in academic clubs, 115 participate in sports, and 20 students participate in both.
29. Make a Venn diagram of the data.
30. How many students participate in either academic clubs or sports?
31. How many students do not participate in either academic clubs or sports?

Copy and complete each truth table.
32.

\boldsymbol{p}	\boldsymbol{q}	$\sim \boldsymbol{p}$	$\sim \boldsymbol{p} \vee \boldsymbol{q}$
T	T		
T	F		
F	T		
F	F		

33.

\boldsymbol{p}	\boldsymbol{q}	$\sim \boldsymbol{p}$	$\sim \boldsymbol{q}$	$\sim \boldsymbol{p} \wedge \sim \boldsymbol{q}$
T		F	F	
T		F	T	
F		T	F	
F		T	T	

Construct a truth table for each compound statement.
34. q and r
35. p or q
36. p or r
37. p and q
38. $q \wedge \sim r$
39. $\sim p \wedge \sim q$
40. $\sim p \vee(q \wedge \sim r)$
41. $p \wedge(\sim q \vee \sim r)$

GEOGRAPHY For Exercises 42-44, use the following information.
A travel agency surveyed their clients about places they had visited. Of the participants, 60 had visited Europe, 45 visited England, and 50 visited France.
42. Make a Venn diagram of the data.
43. Write a conjunction from the data.
44. Write a disjunction from the data.

RESEARCH For Exercises 45-47, use the Internet or another resource to determine whether each statement is true or false.
45. Dallas is not located on the Gulf of Mexico.
46. Either Cleveland or Columbus is located near Lake Erie.
47. It is false that Santa Barbara is located on the Pacific Ocean.

H.O.T. Problems

OPEN ENDED Write a compound statement for each condition.
48. a true disjunction
49. a false conjunction
50. a true statement that includes a negation

CHALLENGE For Exercises 51 and 52, use the following information.
All members of Team A also belong to Team B, but only some members of Team B also belong to Team C. Teams A and C have no members in common.
51. Draw a Venn diagram to illustrate the situation.
52. Which statement(s) are true? Justify your reasoning.
p : If a person is a member of Team C, then the person is not a member of Team A.
q : If a person is not a member of Team B, then the person is not a member of Team A.
r : No person that is a member of Team A can be a member of Team C.
53. Writing in Math Refer to page 83. Describe how you can apply logic to taking tests. Include the difference between a conjunction and a disjunction.
54. Which statement about $\triangle A B C$ has the same truth value as $A B=B C$?

A $m \angle A=m \angle C$
B $m \angle A=m \angle B$
C $A C=B C$
D $A B=A C$
55. REVIEW The box-and-whisker plot below represents the height of 9th graders at a certain high school.

Heights of 9th Graders (inches)

How much greater was the median height of the boys than the median height of the girls?
F 4 inches
H 6 inches
G 5 inches
J 7 inches

Spiral Review

Make a conjecture about the next item in each sequence. (Lesson 2-1)
56. $3,5,7,9$
57. $1,3,9,27$
58. $6,3, \frac{3}{2}, \frac{3}{4}$
59. $17,13,9,5$
60. $64,16,4,1$
61. $5,15,45,135$
62. Rayann has a glass paperweight that is a square pyramid. If the length of each side of the base is 2 inches and the slant height is 2.5 inches, find the surface area. (Lesson 1-7)

COORDINATE GEOMETRY Find the perimeter of each polygon. Round to the nearest tenth. (Lesson 1-6)
63. triangle $A B C$ with vertices $A(-6,7), B(1,3)$, and $C(-2,-7)$
64. square $D E F G$ with vertices $D(-10,-9), E(-5,-2), F(2,-7)$, and $G(-3,-14)$
65. quadrilateral $H I J K$ with vertices $H(5,-10), I(-8,-9), J(-5,-5)$, and $K(-2,-4)$
66. hexagon $L M N P Q R$ with vertices $L(2,1), M(4,5), N(6,4), P(7,-4), Q(5,-8)$, and $R(3,-7)$

Measure each angle and classify it as right, acute, or obtuse. (Lesson 1-4)
67. $\angle A B C$
68. $\angle D B C$
69. $\angle A B D$
70. FENCING Michelle wanted to put a fence around her rectangular garden. The front and back measured 35 feet
 each, and the sides measured 75 feet each. She plans to buy 5 extra feet of fencing to make sure that she has enough. How much should she buy? (Lesson 1-2)

GCT READY for the Next Lesson

PREREQUISITE SKILL Evaluate each expression for the given values. (Page 780)
71. $5 a-2 b$ if $a=4$ and $b=3$
72. $4 c d+2 d$ if $c=5$ and $d=2$
73. $4 e+3 f$ if $e=-1$ and $f=-2$
74. $3 g^{2}+h$ if $g=8$ and $h=-8$

2-3

Conditional Statements

Main Ideas

- Analyze statements in if-then form.
- Write the converse, inverse, and contrapositive of if-then statements.

New Vocabulary
conditional statement if-then statement hypothesis conclusion related conditionals converse inverse contrapositive logically equivalent

Reading Math

If and Then The word if is not part of the hypothesis. The word then is not part of the conclusion.

GET READY for the Lesson

How are conditional statements used in advertisements?
Advertisers often lure consumers into purchasing expensive items by convincing them that they are getting something for free in addition to their purchase.

If-Then Statements The statements above are examples of conditional statements. A conditional statement is a statement that can be written in if-then form. The second example above can be rewritten to illustrate this.

If you buy a car, then you get $\$ 1500$ cash back.

KEY CONCEPT

If-Then Statement

Words An if-then statement is written in the form if p, then q. The phrase immediately following the word if is called the hypothesis, and the phrase immediately following the word then is called the conclusion.

Symbols $p \rightarrow q$, read if p then q, or p implies q.

EXAMPLE Identify Hypothesis and Conclusion

Identify the hypothesis and conclusion of each statement.
a. If points A, B, and C lie on line ℓ, then they are collinear.

If points A, B, and C lie on line ℓ, then they are collinear. hypothesis
conclusion
Hypothesis: points A, B, and C lie on line ℓ
Conclusion: they are collinear
b. The Tigers will play in the tournament if they win their next game.
Hypothesis: the Tigers win their next game
Conclusion: they will play in the tournament

CHECK Your Progress:

1A. If a polygon has six sides, then it is a hexagon.
1B. Another performance will be scheduled if the first one is sold out.

Real-World Link
Inline skating is the fastestgrowing recreational sport. Participation has increased 630\% over the past 15 years.

Source: International Inline Skating Association

Some conditional statements are written without the "if" and "then." You can write these statements in if-then form by first identifying the hypothesis and the conclusion.

EXAMPLE Write a Conditional in If-Then Form

2 Identify the hypothesis and conclusion of each statement. Then write each statement in if-then form.
a. An angle with a measure greater than 90 is an obtuse angle.

Hypothesis: an angle has a measure greater than 90
Conclusion: it is an obtuse angle
If an angle has a measure greater than 90 , then it is an obtuse angle.
b. The length of the course for an inline skating marathon is $\mathbf{2 6 . 2} \mathbf{~ m i l e s}$.

Hypothesis: a course is for an inline skating marathon
Conclusion: it is 26.2 miles
If a course is for an inline skating marathon, then it is 26.2 miles.

YCHECK Your Progress:

2A. An angle formed by perpendicular lines is a right angle.
2B. A cheetah has nonretractile claws.

Recall that the truth value of a statement is either true or false. The hypothesis and conclusion of a conditional statement, as well as the conditional statement itself, can also be true or false.

40 HECK Your Progress

3. You get 85%; your teacher gives you a B.

Common Misconception

A true hypothesis does not necessarily mean that a conditional is true. Likewise, a false conclusion does not guarantee that a conditional is false.

Real-World EXAMPLE Truth Values of Conditionals

3 SCHOOL Determine the truth value of the following statement for each set of conditions.

If you get 100% on your test, then your teacher will give you an A.
a. You get $\mathbf{1 0 0 \%}$; your teacher gives you an A.

The hypothesis is true since you got 100%, and the conclusion is true
because the teacher gave you an A. Since what the teacher promised is true, the conditional statement is true.
b. You get $\mathbf{1 0 0} \%$; your teacher gives you a B.

The hypothesis is true, but the conclusion is false. Because the result is
not what was promised, the conditional statement is false.
c. You get $\mathbf{9 8 \%}$; your teacher gives you an A .

The hypothesis is false, and the conclusion is true. The statement does not say what happens if you do not get 100% on the test. You could still get an A. It is also possible that you get a B. In this case, we cannot say that the statement is false. Thus, the statement is true.
nline Personal Tutor at geometryonline.com

The resulting truth values in Example 3 can be used to create a truth table for conditional statements. Notice that a conditional statement is true in all cases except where the hypothesis is true and the conclusion is false.

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \rightarrow \boldsymbol{q}$
T	T	T
T	F	F
F	T	T
F	F	T

Converse, Inverse, and Contrapositive Other statements based on a given conditional statement are known as related conditionals. Consider the conditional If you live in San Francisco, then you live in California. The hypothesis is you live in San Francisco, and the conclusion is you live in California. If you reverse the hypothesis and conclusion, you form the conditional If you live in California, then you live in San Francisco. This is the converse of the conditional. The inverse and the contrapositive are formed using the negations of the hypothesis and the conclusion.

KEY CONCEPT			Related Conditionals
Statement	Formed by	Symbols	Examples
Conditional	given hypothesis and conclusion	$p \rightarrow q$	If two angles have the same measure, then they are congruent.
Converse	exchanging the hypothesis and conclusion of the conditional	$q \rightarrow p$	If two angles are congruent, then they have the same measure.
Inverse	negating both the hypothesis and conclusion of the conditional	$\sim p \rightarrow \sim q$	If two angles do not have the same measure, then they are not congruent.
Contrapositive	negating both the hypothesis and conclusion of the converse statement	$\sim q \rightarrow \sim p$	If two angles are not congruent, then they do not have the same measure.

If a given conditional is true, the converse and inverse are not necessarily true. However, the contrapositive of a true conditional is always true, and the contrapositive of a false conditional is always false. Likewise, the converse and inverse of a conditional are either both true or both false.

Statements with the same truth values are said to be logically equivalent. So, a conditional and its contrapositive are logically equivalent as are the converse and inverse of a conditional. These relationships are summarized in the table below.

\boldsymbol{p}	\boldsymbol{q}	Condifional $\boldsymbol{p} \rightarrow \boldsymbol{q}$	Converse $\boldsymbol{q} \rightarrow \boldsymbol{p}$	Inverse $\sim \boldsymbol{p} \rightarrow \sim \boldsymbol{q}$	Contrapositive $\sim \boldsymbol{q} \rightarrow \sim \boldsymbol{p}$
T	T	T	T	T	T
T	F	F	T	T	F
F	T	T	F	F	T
F	F	T	T	T	T

EXAMPLE Related Conditionals

(4) Write the converse, inverse, and contrapositive of the following statement. Determine whether each statement is true or false. If a statement is false, give a counterexample.
Linear pairs of angles are supplementary.
First, write the conditional in if-then form.
Conditional: If two angles form a linear pair, then they are supplementary. The conditional statement is true.

Write the converse by switching the hypothesis and conclusion.
Converse: If two angles are supplementary, then they form a linear pair. The converse is false. $\angle A B C$ and $\angle P Q R$ are supplementary, but are not a linear pair.
Inverse: If two angles do not form a linear pair, then they are not supplementary. The inverse is false. $\angle A B C$ and $\angle P Q R$ do not form a linear pair, but they are supplementary. The inverse is formed by negating the hypothesis and
 conclusion of the conditional.

The contrapositive is formed by negating the hypothesis and conclusion of the converse.

Contrapositive: If two angles are not supplementary, then they do not form a linear pair. The contrapositive is true.

YCHECK Your Progress.

4. Vertical angles are congruent.

Chenecer Your Uindentanding

Example 1 Identify the hypothesis and conclusion of each statement.

1. If it rains on Monday, then I will stay home.
2. If $x-3=7$, then $x=10$.

Example 2 Write each statement in if-then form.
(p. 92) 3. A 32 -ounce pitcher holds a quart of liquid.
4. The sum of the measures of supplementary angles is 180 .
5. FORESTRY In different regions of the country, different variations of trees dominate the landscape. Write the three conditionals in if-then form.

- In Colorado, aspen trees cover high areas of the mountains.
- In Florida, cypress trees rise from swamps.
- In Vermont, maple trees are prevalent.

Example 3 Determine the truth value of the following statement for each set (p. 92) of conditions.

If you drive faster than 65 miles per hour, then you will receive a speeding ticket.
6. You drive 70 miles per hour, and you receive a speeding ticket.
7. You drive 62 miles per hour, and you do not receive a speeding ticket.
8. You drive 68 miles per hour, and you do not receive a speeding ticket.

Example 4 Write the converse, inverse, and contrapositive of each conditional (p. 94) statement. Determine whether each related conditional is true or false. If a statement is false, find a counterexample.
9. If plants have water, then they will grow.
10. Flying in an airplane is safer than riding in a car.

Emerames

HOMEWORK $H E L P$	
For Exercises	See Examples
$11-18$	1
$19-26$	2
$27-36$	3
$37-42$	4

Real-World Link
The Andy Warhol Museum has over 4000 works of art including prints, paintings, films, photographs, and sculpture. About 500 of these pieces are on display at a time. The museum also has works by colleagues of Andy Warhol.

Source: warhol.org

Identify the hypothesis and conclusion of each statement.
11. If you are a teenager, then you are at least 13 years old.
12. If you have a driver's license, then you are at least 16 years old.
13. If $2 x+6=10$, then $x=2$.
14. If three points lie on a line, then they are collinear.
15. "If there is no struggle, there is no progress." (Frederick Douglass)
16. If the measure of an angle is between 0 and 90 , then the angle is acute.
17. If a quadrilateral has four congruent sides, then it is a square.
18. If a convex polygon has five sides, then it is a pentagon.

Write each statement in if-then form.
19. Get a free water bottle with a one-year gym membership.
20. Math teachers love to solve problems.
21. "I think, therefore I am." (Descartes)
22. Adjacent angles have a common side.
23. Vertical angles are congruent.
24. Equiangular triangles are equilateral.
25. MUSIC Different instruments are emphasized in different types of music.

- Jazz music often incorporates trumpet or saxophone.
- Rock music emphasizes guitar and drums.
- In hip-hop music the bass is featured.

26. ART Several artists have their own museums dedicated to exhibiting their work. At the Andy Warhol Museum in Pittsburgh, Pennsylvania, most of the collection is Andy Warhol's artwork.

Determine the truth value of the following statement for each set of conditions.
If you are over 18 years old, then you vote in all elections.
27. You are 19 years old and you vote.
28. You are 21 years old and do not vote.
29. You are 17 years old and do not vote.
30. Your dad is 45 years old and does not vote.

In the figure, P, Q, and R are collinear, P and A lie in plane \mathscr{M}, and Q and B lie in plane \mathfrak{N}. Determine the truth value of each statement.
31. P, Q, and R lie in plane \mathscr{M}.
32. $\overleftrightarrow{Q B}$ lies in plane \mathcal{N}.
33. Q lies in plane \mathcal{M}.
34. P, Q, A, and B are coplanar.
35. $\overleftrightarrow{A P}$ contains Q.
36. Planes \mathscr{M} and \mathcal{N} intersect at $\overleftrightarrow{R Q}$.

Write the converse, inverse, and contrapositive of each conditional statement. Determine whether each related conditional is true or false. If a statement is false, find a counterexample.
37. If you live in Dallas, then you live in Texas.
38. If you exercise regularly, then you are in good shape.
39. The sum of two complementary angles is 90 .
40. All rectangles are quadrilaterals.
41. All right angles measure 90.
42. Acute angles have measures less than 90.

SEASONS For Exercises 43 and 44, use the following information.
Due to the movement of Earth around the Sun, summer days in Alaska have more hours of daylight than darkness, and winter days have more hours of darkness than daylight.
43. Write two true conditional statements in if-then form for summer days and winter days in Alaska.
44. Write the converse of the two true conditional statements. State whether each is true or false. If a statement is false, find a counterexample.
45. OPEN ENDED Write an example of a conditional statement.
46. REASONING Compare and contrast the inverse and contrapositive of a conditional.
47. CHALLENGE Write a false conditional. Is it possible to insert the word not into your conditional to make it true? If so, write the true conditional.
48. Writing in Math Refer to page 91. Describe how conditional statements are used in advertisements. Include an example of a conditional statement in if-then form that could be used in an advertisement.

STANDARDIZED TEST PRACTICE

49. "If the sum of the measures of two angles is 90 , then the angles are complementary angles."
Which of the following is the converse of the conditional above?

A If the angles are complementary angles, then the sum of the measures of two angles is 90 .

B If the angles are not complementary angles, then the sum of the measures of two angles is 90 .
C If the angles are complementary angles, then the sum of the measures of two angles is not 90 .
D If the angles are not complementary angles, then the sum of the measures of two angles is not 90 .
50. REVIEW What is $\frac{10 a^{2}-15 a b}{4 a^{2}-9 b^{2}}$ reduced
to lowest terms?

F $\frac{5 a}{2 a-3 b}$
G $\frac{5 a}{2 a+3 b}$
H $\frac{a}{2 a+3 b}$
J $\frac{a}{2 a-3 b}$

For Exercises 51-53, refer to the following information.

The program at the right assigns random single digit integers to A and B. Then the program evaluates A and B and assigns a value to C.
51. Copy the program into your graphing calculator. Execute the program five times.
52. Write the conditional statement used in the program that assigns the value 4 to C.
53. Write the conditional statement that assigns the value 5 to C .

PROGRAM: BOOLEAN
:randlnt $(0,9) \rightarrow \mathrm{A}$
:randlınt $(0,9) \rightarrow B$
:if $\mathrm{A} \geq 2$ and $\mathrm{B}=3$
:Then: $4 \rightarrow$ C
:Else:5 \rightarrow C
:End

Spiral Review

Use the following statements to write a compound statement for each conjunction and disjunction. Then find its truth value. (Lesson 2-2)
p : George Washington was the first president of the United States.
q : A hexagon has five sides.
$r: 60 \times 3=18$
54. $p \wedge q$
55. $q \vee r$
56. $p \vee q$
57. $\sim q \vee r$
58. $p \wedge \sim q$
59. $\sim p \wedge \sim r$

Make a conjecture based on the given information. Draw a figure to illustrate your conjecture. (Lesson 2-1)
60. $A B C D$ is a rectangle.
61. $J(-3,2), K(1,8), L(5,2)$
62. In $\triangle P Q R, m \angle P Q R=90$.

For Exercises 63-66, use the rectangle at the right. (Lesson 1-6)
63. Find the perimeter of the rectangle.
64. Find the area of the rectangle.
65. Suppose the length and width of the rectangle are each doubled.
 What effect does this have on the perimeter?
66. Describe the effect on the area.

Use the Distance Formula to find the distance between each pair of points. (Lesson 1-3)
67. $C(-2,-1), D(0,3)$
68. $J(-3,5), K(1,0)$
69. $P(-3,-1), Q(2,-3)$

For Exercises 70-72, draw and label a figure for each relationship. (Lesson 1-1)
70. $\overleftrightarrow{F G}$ lies in plane M and contains point H.
71. Lines r and s intersect at point W.
72. Line ℓ contains P and Q, but does not contain R.

GET READY for the Next Lesson

PREREQUISITE SKILL Identify the operation used to change Equation (1) to
Equation (2). (Pages 781-782)
73.
(1) $3 x+4=5 x-8$
74. (1) $\frac{1}{2}(a-5)=12$
75. (1) $8 p=24$
(2) $3 x=5 x-12$
(2) $a-5=24$
(2) $p=3$

Biconditional Statements

Ashley began a new summer job, earning $\$ 10$ an hour. If she works over 40 hours a week, she earns time and a half, or $\$ 15$ an hour. If she earns $\$ 15$ an hour, she has worked over 40 hours a week.
p: Ashley earns $\$ 15$ an hour
q : Ashley works over 40 hours a week
$p \rightarrow q$: If Ashley earns $\$ 15$ an hour, she has worked over 40 hours a week.
$q \rightarrow p$: If Ashley works over 40 hours a week, she earns $\$ 15$ an hour.
In this case, both the conditional and its converse are true. The conjunction of the two statements is called a biconditional.

KEY CONCEPT

Biconditional Statement

Words A biconditional statement is the conjunction of a conditional and its converse.

Symbols $(p \rightarrow q) \wedge(q \rightarrow p)$ is written $(p \leftrightarrow q)$ and read p if and only if q.
If and only if can be abbreviated iff.
So, the biconditional statement is as follows. $p \leftrightarrow q$: Ashley earns $\$ 15$ an hour if and only if she works over 40 hours a week.

Examples

Write each biconditional as a conditional and its converse. Then determine whether the biconditional is true or false. If false, give a counterexample.
a. Two angle measures are complements if and only if their sum is $\mathbf{9 0}$.

Conditional: If two angle measures are complements, then their sum is 90 .
Converse: If the sum of two angle measures is 90 , then they are complements.
Both the conditional and the converse are true, so the biconditional is true.
b. $x>9$ iff $x>0$

Conditional: If $x>9$, then $x>0$. Converse: If $x>0$, then $x>9$. The conditional is true, but the converse is not. Let $x=2$. Then $2>0$ but $2 \ngtr 9$. So, the biconditional is false.

Reading to Learn

Write each biconditional as a conditional and its converse. Then determine whether the biconditional is true or false. If false, give a counterexample.

1. A calculator will run if and only if it has batteries.
2. Two lines intersect if and only if they are not vertical.
3. Two angles are congruent if and only if they have the same measure.
4. $3 x-4=20$ iff $x=7$.

2-4 Deductive Reasoning

Main Ideas

- Use the Law of Detachment.
- Use the Law of Syllogism.

New Vocabulary

deductive reasoning Law of Detachment Law of Syllogism

GET READY for the Lesson

When you are ill, your doctor may prescribe an antibiotic to help you get better. Doctors may use a dose chart like the one shown to determine the correct amount of medicine you should take.

Law Of Detachment The process that doctors use to determine the amount of medicine a patient should take is called deductive reasoning. Unlike inductive reasoning, which uses examples to make a conjecture, deductive reasoning uses facts, rules, definitions, or properties to reach logical conclusions. Inductive reasoning by itself does not prove anything, but deductive reasoning can be used to prove statements.

One form of deductive reasoning that is used to draw conclusions from true conditional statements is called the Law of Detachment.

KEY CONCEPT

Law of Detachment

Study Tip

Validity

When you apply the Law of Detachment, make sure that the conditional is true before you test the validity of the conclusion.

Symbols $\quad[(p \rightarrow q) \wedge p] \rightarrow q$

EXAMPLE Determine Valid Conclusions

The statement below is a true conditional. Determine whether each conclusion is valid based on the given information. Explain your reasoning.
If a ray is an angle bisector, then it divides the angle into two congruent angles.
Given: $\overrightarrow{B D}$ bisects $\angle A B C$.
Conclusion: $\angle A B D \cong \angle C B D$
The hypothesis states that $\overrightarrow{B D}$ is the bisector of $\angle A B C$. Since the conditional is
 true and the hypothesis is true, the conclusion is valid.

1. If segments are parallel, then they do not intersect.

Given: $\overline{A B}$ and $\overline{C D}$ do not intersect.
Conclusion: $\quad \overline{A B} \| \overline{C D}$

Law of Syllogism Another law of logic is the Law of Syllogism. It is similar to the Transitive Property of Equality.

KEY CONCEPT

Law of Syllogism
Words If $p \rightarrow q$ and $q \rightarrow r$ are true, then $p \rightarrow r$ is also true.
Symbols $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$
Example If $2 x=14$, then $x=7$ and if $x=7$, then $\frac{1}{x}=\frac{1}{7}$. Therefore, if $2 x=14$ then $\frac{1}{x}=\frac{1}{7}$.

Study Tip

Conditional

 StatementsLabel the hypotheses and conclusions of a series of statements before applying the Law of Syllogism.

Real-World EXAMPLE Determine Valid Conclusions From Two Conditionals

(2) CHEMISTRY Use the Law of Syllogism to determine whether a valid conclusion can be reached from each set of statements.
a. (1) If the symbol of a substance is Pb , then it is lead.
(2) If a substance is lead, then its atomic number is 82.

Let p, q, and r represent the parts of the statements.
p : the symbol of a substance is Pb
q : it is lead
r : the atomic number is 82
Statement (1): $p \rightarrow q$
Statement (2): $q \rightarrow r$
Since the given statements are true, use the Law of Syllogism to conclude $p \rightarrow r$. That is, If the symbol of a substance is $P b$, then its atomic number is 82 .
b. (1) Water can be represented by $\mathrm{H}_{2} \mathrm{O}$.
(2) Hydrogen (H) and oxygen (O) are in the atmosphere.

There is no valid conclusion. While both statements are true, the conclusion of each statement is not used as the hypothesis of the other.

2 CHECK Your Progress:

2A. (1) If you stand in line, then you will get to ride the new roller coaster.
(2) If you are at least 48 inches tall, you will get to ride the new roller coaster.
2B. (1) If a polygon has six congruent sides, then it is a regular hexagon.
(2) If a regular hexagon has a side length of 3 units, then the perimeter is 3(6) or 18 units.

Interactive Lab geometryonline.com

EXAMPLE Analyze Conclusions

(3) Determine whether statement (3) follows from statements (1) and (2) by the Law of Detachment or the Law of Syllogism. If it does, state which law was used. If it does not, write invalid.
(1) Vertical angles are congruent.
(2) If two angles are congruent, then their measures are equal.
(3) If two angles are vertical, then their measures are equal.
p : two angles are vertical
q : they are congruent
r : their measures are equal
Statement (3) is a valid conclusion by the Law of Syllogism.

lefleck Yout Progress:

3. (1) The length of a side of square A is the same as the length of a side of square B.
(2) If the lengths of the sides of two squares are the same, then the squares have the same perimeter.
(3) Square A and square B have the same perimeter.

Thateck Your Ondentanding

Example 1 Determine whether the stated conclusion is valid based on the given (p. 99) information. If not, write invalid. Explain your reasoning.

If two angles are vertical angles, then they are congruent.

1. Given: $\angle A$ and $\angle B$ are vertical angles.

Conclusion: $\angle A \cong \angle B$
2. Given: $\angle C \cong \angle D$

Conclusion: $\angle C$ and $\angle D$ are vertical angles.
Example 2 Use the Law of Syllogism to determine whether a valid conclusion can be (p. 100) reached from each set of statements. If a valid conclusion is possible, write it. If not, write no conclusion.
3. If you are 18 years old, you can vote.

You can vote.
4. The midpoint divides a segment into two congruent segments.

If two segments are congruent, then their measures are equal.
Example 3 Determine whether statement (3) follows from statements (1) and (2) by the (p. 101) Law of Detachment or the Law of Syllogism. If it does, state which law was used. If it does not, write invalid.
5. (1) If Molly arrives at school at 7:30 A.M., she will get help in math.
(2) If Molly gets help in math, then she will pass her math test.
(3) If Molly arrives at school at 7:30 A.M., then she will pass her math test.
6. (1) Right angles are congruent.
(2) $\angle X \cong \angle Y$
(3) $\angle X$ and $\angle Y$ are right angles.

INSURANCE For Exercises 7 and 8, use the following information. An insurance company advertised the following monthly rates for life insurance.
$\left\{\left.\begin{array}{l}\text { Premium for } \$ \mathbf{3 0 , 0 0 0} \\ \text { Coverage }\end{array} \begin{array}{c}\text { Premium for } \$ \mathbf{5 0 , 0 0 0} \\ \text { Coverage }\end{array} \right\rvert\,\right.$
7. If Marisol is 35 years old and she wants to purchase $\$ 30,000$ of insurance from this company, then what is her premium?
8. Terry paid $\$ 21.63$ for life insurance. Can you conclude that Terry is 35 ? Explain.

Exercises

HOMEWORK HELP

For Exercises	See Examples
$9-16$	1
$17-20$	2
$21-26$	3

For Exercises 9-16, determine whether the stated conclusion is valid based on the given information. If not, write invalid. Explain your reasoning.
If two numbers are odd, then their sum is even.
9. Given: The sum of two numbers is 22.

Conclusion: The two numbers are odd.
10. Given: The numbers are 5 and 7 . Conclusion: The sum is even.
11. Given: 11 and 23 are added together.

Conclusion: The sum of 11 and 23 is even.
12. Given: The numbers are 2 and 6.

Conclusion: The sum is odd.
If three points are noncollinear, then they determine a plane.
13. Given: A, B, and C are noncollinear.

Conclusion: A, B, and C determine a plane.
14. Given: E, F, and G lie in plane M.

Conclusion: E, F, and G are noncollinear.
15. Given: P and Q lie on a line.

Conclusion: P and Q determine a plane.
16. Given: $\triangle X Y Z$

Conclusion: X, Y, and Z determine a plane.
Use the Law of Syllogism to determine whether a valid conclusion can be reached from each set of statements. If a valid conclusion is possible, write it. If not, write no conclusion.
17. If you interview for a job, then you wear a suit. If you interview for a job, then you will be offered that job.
18. If the measure of an angle is less than 90 , then it is acute. If an angle is acute, then it is not obtuse.
19. If X is the midpoint of segment $Y Z$, then $Y X=X Z$.

If the measures of two segments are equal, then they are congruent.
20. If two lines intersect to form a right angle, then they are perpendicular. Lines ℓ and m are perpendicular.

Real-World Link
Carly Patterson was the first American gymnast to win the allaround competition since Mary Lou Retton 20 years before.

Source: www.dallas.about.com

EXTRA PRACTICE
See pages 804, 829.
Math nijne
Self-Check Quiz at
geometryonline.com
H.O.T. Problems

Determine whether statement (3) follows from statements (1) and (2) by the Law of Detachment or the Law of Syllogism. If it does, state which law was used. If it does not, write invalid.
21. (1) Ballet dancers like classical music.
(2) If you like classical music, then you enjoy the opera.
(3) If you are a ballet dancer, then you enjoy the opera.
22. (1) If the measure of an angle is greater than 90 , then it is obtuse.
(2) $m \angle A B C>90$
(3) $\angle A B C$ is obtuse.
23. (1) Vertical angles are congruent.
(2) $\angle 3 \cong \angle 4$
(3) $\angle 3$ and $\angle 4$ are vertical angles.
24. (1) If an angle is obtuse, then it cannot be acute.
(2) $\angle A$ is obtuse.
(3) $\angle A$ cannot be acute.
25. (1) If you drive safely, then you can avoid accidents.
(2) Tika drives safely.
(3) Tika can avoid accidents.
26. (1) If you are athletic, then you enjoy sports.
(2) If you are competitive, then you enjoy sports.
(3) If you are competitive, then you are athletic.
27. LITERATURE John Steinbeck, a Pulitzer Prize-winning author, lived in Monterey, California, for part of his life. In 1945, he published the book, Cannery Row, about many of his working-class heroes from Monterey. If you visited Cannery Row in Monterey during the 1940s, then you could hear the grating noise of the fish canneries. Write a valid conclusion to the hypothesis If John Steinbeck lived in Monterey in 1941,
28. SPORTS In the 2004 Summer Olympics, gymnast Carly Patterson won the gold medal in the women's individual all-around competition. Use the two true conditional statements to reach a valid conclusion about the 2004 competition.
(1) If the sum of Carly Patterson's individual scores is greater than the rest of the competitors, then she wins the competition.
(2) If a gymnast wins the competition, then she earns a gold medal.
29. OPEN ENDED Write an example to illustrate the correct use of the Law of Detachment.
30. REASONING Explain how the Transitive Property of Equality is similar to the Law of Syllogism.
31. FIND THE ERROR An article in a magazine states that if you get seasick, then you will get dizzy. It also says that if you get seasick, you will get an upset stomach. Suzanne says that this means that if you get dizzy, then you will get an upset stomach. Lakeisha says that she is wrong. Who is correct? Explain.
32. CHALLENGE Suppose all triangles that satisfy Property B satisfy the Pythagorean Theorem. Is the following statement true or false? Justify your answer using what you have learned in Lessons 2-3 and 2-4. A triangle that is not a right triangle does not satisfy Property B.
33. Writing in Math Refer to page 99. Explain how a doctor uses deductive reasoning to diagnose an illness, such as strep throat or chickenpox.
34. Determine which statement follows logically from the given statements. If you order two burritos, you also get nachos.
Michael ordered two burritos.
A Michael ordered one burrito.
B Michael will order two burritos.
C Michael ordered nachos and burritos.

D Michael got nachos.
35. REVIEW What is the slope of this line?

F $\frac{1}{4}$
G $-\frac{1}{4}$
H 4
J -4

Spiral Review

MARKETING For Exercises 36-38, use the following information. (Lesson 2-3)
Marketing executives use if-then statements in advertisements to promote products or services. An ad for a car repair shop reads, If you're looking for fast and reliable car repair, visit AutoCare.
36. Write the converse of the conditional.
37. What do you think the advertiser wants people to conclude about AutoCare?
38. Does the advertisement say that AutoCare is fast and reliable?

Construct a truth table for each compound statement. (Lesson 2-2)
39. $q \wedge r$
40. $\sim p \vee r$
41. $p \wedge(q \vee r)$
42. $p \vee(\sim q \wedge r)$

For Exercises 43-47, refer to the figure at the right. (Lesson 1-5)
43. Which angle is complementary to $\angle F D G$?
44. Name a pair of vertical angles.
45. Name a pair of angles that are noncongruent and supplementary.
46. Identify $\angle F D H$ and $\angle C D H$ as congruent, adjacent, vertical, complementary, supplementary, and/or a linear pair.

47. Can you assume that $\overline{D C} \cong \overline{C E}$? Explain.

GCT READY for the Next Lesson

PREREQUISITE SKILL Write what you can assume about the segments or angles
listed for each figure. (Lesson 1-5)
48. $\overline{A M}, \overline{C M}, \overline{C N}, \overline{B N}$
49. $\angle 1, \angle 2$
50. $\angle 4, \angle 5, \angle 6$

2-5

Postulates and Paragraph Proofs

Main Ideas

- Identify and use basic postulates about points, lines, and planes.
- Write paragraph proofs.

New Vocabulary
postulate
axiom
theorem
proof
paragraph proof informal proof

GET READY for the Lesson

U.S. Supreme Court Justice William Douglas stated, "The First Amendment makes confidence in the common sense of our people and in the maturity of their judgment the great postulate of our democracy." The writers of the constitution assumed that citizens would act and speak with common sense and maturity. Some statements in geometry also must be assumed or accepted as true.

Points, Lines, and Planes A postulate or axiom is a statement that is accepted as true. In Chapter 1, you studied basic ideas about points, lines, and planes. These ideas can be stated as postulates.

POSTULATES

2.1 Through any two points, there is exactly one line.
2.2 Through any three points not on the same line, there is exactly one plane.

Real-World EXAMPLE Points and Lines

(1) COMPUTERS Each of five computers needs to be connected to every other computer. How many connections need to be made?

Explore There are five computers, and each is connected to four others.
Plan Draw a diagram to illustrate the solution.
Solve Let noncollinear points A, B, C, D, and E represent the five computers. Connect each point with every other point.
Between every two points there is exactly one segment. So, the connection between computer A and computer B is the same as between computer B and computer A. For
 the five points, ten segments can be drawn.

Check $\overline{A B}, \overline{A C}, \overline{A D}, \overline{A E}, \overline{B C}, \overline{B D}, \overline{B E}, \overline{C D}, \overline{C E}$, and $\overline{D E}$ each represent a connection. So, there will be ten connections in all.

CHECK Your Progress:

1. Determine the number of segments that can connect 4 points.

POSTULATES

2.3 A line contains at least two points.
2.4 A plane contains at least three points not on the same line.
2.5 If two points lie in a plane, then the entire line containing those points lies in that plane.
2.6 If two lines intersect, then their intersection is exactly one point.
2.7 If two planes intersect, then their intersection is a line.

EXAMPLE Use Postulates

(2) Determine whether each statement is always, sometimes, or never true. Explain.
a. If points A, B, and C lie in plane M, then they are collinear.

Sometimes; A, B, and C do not have to be collinear to lie in plane M.
b. There is exactly one plane that contains noncollinear points P, Q, and R. Always; Postulate 2.2 states that through any three noncollinear points, there is exactly one plane.
c. There are at least two lines through points M and N.

Never; Postulate 2.1 states that through any two points, there is exactly one line.

12CHECK Your Progress

2. If two coplanar lines intersect, then the point of intersection lies in the same plane as the two lines.

Paragraph Proofs Undefined terms, definitions, postulates, and algebraic properties of equality are used to prove that other statements or conjectures are true. Once a statement or conjecture has been shown to be true, it is called a theorem, and it can be used to justify that other statements are true.
You will study and use various methods to verify or prove statements and conjectures in geometry. A proof is a logical argument in which each statement you make is supported by a statement that is accepted as true. One type of

Study Tip

 proof is called a paragraph proof or informal proof. In this type of proof, youAxiomatic System An axiomatic system is a set of axioms, from which some or all axioms can be used together to logically derive theorems.
write a paragraph to explain why a conjecture for a given situation is true.

KEY CONCEPT

Five essential parts of a good proof:

- State the theorem or conjecture to be proven.
- List the given information.
- If possible, draw a diagram to illustrate the given information.
- State what is to be proved.
- Develop a system of deductive reasoning.

Proofs

Before writing a proof, you should have a plan. One strategy is to work backward. Start with what you want to prove, and work backward step by step until you reach the given information.

EXAMPLE Write a Paragraph Proof

3 Given that M is the midpoint of $\overline{P Q}$, write a paragraph proof to show that $\overline{P M} \cong \overline{M Q}$.
Given: M is the midpoint of $\overline{P Q}$.
Prove: $\overline{P M} \cong \overline{M Q}$
From the definition of midpoint of a segment, $P M=M Q$. This means that $\overline{P M}$ and $\overline{M Q}$ have the same measure. By the definition of congruence, if two segments have the same measure, then they are congruent. Thus, $\overline{P M} \cong \overline{M Q}$.

2CHECK Your Progress

3. Given that $\overline{A C} \cong \overline{C B}$, and C is between A and B, write a paragraph proof to show that C is
 the midpoint of $\overline{A B}$.

nins Personal Tutor at geometryonline.com

Once a conjecture has been proven true, it can be stated as a theorem and used in other proofs. The conjecture in Example 3 is the Midpoint Theorem.

THEOREM 2.1

MFdpoint Theorem
If M is the midpoint of $\overline{A B}$, then $\overline{A M} \cong \overline{M B}$.

Example 1
(p. 105)

Example 2
(p. 106)

Example 3
(p. 107)

Determine the number of segments that can be drawn connecting each set of points.
1.

2.

- •

3. DANCING Six students will dance at the opening of a new community center. The students, each connected to each of the other students with wide colored ribbons, will move in a circular motion. How many ribbons are needed?
4. Determine whether the following statement is always, sometimes, or never true. Explain. The intersection of three planes is two lines.
In the figure at the right, $\overleftrightarrow{B D}$ and $\overleftrightarrow{B R}$ are in plane \mathcal{P}, and W is on $\overleftrightarrow{B D}$. State the postulate that can be used to show each statement is true.
5. B, D, and W are collinear.
6. E, B, and R are coplanar.

7. PROOF In the figure at the right, P is the midpoint of $\overline{Q R}$ and $\overline{S T}$, and $\overline{Q R} \cong \overline{S T}$. Write a paragraph proof to show that $P Q=P T$.

HOMEWORK	$H E L P$
For	See Exercises Examples
$8-10$	1
$11-14$	2
15,16	3

 Detective
A police detective gathers facts and collects evidence for use in criminal cases. The facts and evidence are used together to prove a suspect's guilt in court.

For more information, go to geometryonline.com.

Determine the number of segments that can be drawn connecting each set of points.
8.
9.
$\begin{array}{llll}10 . & & \bullet & \\ & \bullet & & \\ & & \bullet & \\ & & & \end{array}$

Determine whether each statement is always, sometimes, or never true. Explain.
11. Three points determine a plane.
12. Points G and H are in plane X. Any point collinear with G and H is in plane X.
13. The intersection of two planes can be a point.
14. Points S, T, and U determine three lines.
15. PROOF Point C is the midpoint of $\overline{A B}$ and B is the midpoint of $\overline{C D}$. Prove that $\overline{A C} \cong \overline{B D}$.
16. PROOF Point L is the midpoint of $\overline{J K} . \overline{J K}$ intersects $\overline{M K}$ at K. If $\overline{M K} \cong \overline{J L}$, prove that $\overline{L K} \cong \overline{M K}$.

In the figure at the right, $\overleftrightarrow{A C}$ and $\overleftrightarrow{B D}$ lie in plane \mathcal{I}, and $\overleftrightarrow{B Y}$ and $\stackrel{\rightharpoonup}{C X}$ lie in plane \mathcal{K}. State the postulate that can be used to show each statement is true.
17. C and D are collinear.
18. $\overleftrightarrow{X B}$ lies in plane \mathcal{K}
19. Points A, C, and X are coplanar.
20. $\overleftrightarrow{A D}$ lies in plane g.

21. CAREERS Many professions use deductive reasoning and paragraph proofs. For example, a police officer uses deductive reasoning investigating a traffic accident and then writes the findings in a report. List a profession, and describe how it can use paragraph proofs.
22. MODELING Isabel's teacher asked her to make a model showing the number of lines and planes formed from four points that are noncollinear and noncoplanar. Isabel decided to make a mobile of straws, pipe cleaners, and colored sheets of tissue paper. She plans to glue the paper to the straws and connect the straws together to form a group of connected planes. How many planes and lines will she have?
23. REASONING Explain how deductive reasoning is used in a proof. List the types of reasons that can be used for justification in a proof.
24. OPEN ENDED Draw figures to illustrate Postulates 2.6 and 2.7.

EXTRA PRACTICE
See pages 803, 829.
Math nime
Self-Check Quiz at geometryonline.com
25. Which One Doesn't Belong? Identify the term that does not belong with the other three. Explain your reasoning.
postulate
conjecture
theorem
axiom
26. CHALLENGE Three noncollinear points lie in a single plane. In Exercise 22, you found the number of planes defined by four noncollinear points. What are the least and greatest number of planes defined by five noncollinear points?
27. Writing in Math Refer to page 105. Describe how postulates are used in literature. Include an example of a postulate in historic United States' documents.

STANDARDIZED TEST PRACTICE

28. Which statement cannot be true?

A Three noncollinear points determine a plane.
B Two lines intersect at exactly one point.
C At least two lines can contain the same two points.
D A midpoint divides a segment into two congruent segments.
29. REVIEW Which is one of the solutions to the equation $3 x^{2}-5 x+1=0$?
F $\frac{5+\sqrt{13}}{6}$
G $\frac{-5-\sqrt{13}}{6}$
H $\frac{5}{6}-\sqrt{13}$
J $-\frac{5}{6}+\sqrt{13}$

Spiral Review

30. Determine whether statement (3) follows from statements (1) and (2) by the Law of Detachment or the Law of Syllogism. If it does, state which law was used. If it does not, write invalid. (Lesson 2-4)
(1) Part-time jobs require 20 hours of work per week.
(2) Diego has a part-time job.
(3) Diego works 20 hours per week.
31. Write the converse, inverse, and contrapositive of the conditional statement. Determine whether the related conditional is true or false. If a statement is false, find a counterexample. If you have access to the Internet at your house, then you have a computer. (Lesson 2-3)

GET READY for the Next Lesson

PREREQUISITE SKILL Solve each equation. (Pages 781-782)
32. $m-17=8$
33. $3 y=57$
34. $\frac{y}{6}+12=14$
35. $-t+3=27$

Mid-Chapter Quiz

Lessons 2-1 through 2-5

Determine whether each conjecture is true or false. Give a counterexample for any false conjecture. (Lesson 2-1)

1. Given: $W X=X Y$

Conjecture: W, X, Y are collinear.
2. Given: $\angle 1$ and $\angle 2$ are not complementary. $\angle 2$ and $\angle 3$ are complementary.
Conjecture: $m \angle 1=m \angle 3$
3. PETS Michaela took a survey of six friends and created the table shown below.

Name	Number of Cats	Number of Dogs	Number of Fish
Kristen	2	0	0
Jorge	0	0	5
Mark	0	2	2
Carissa	1	1	0
Alex	2	1	10
Akilah	1	1	1

Michaela reached the following conclusion. If a person has 3 or more pets, then they have a dog. Is this conclusion valid? If not, find a counterexample. (Lesson 2-1)

Construct a truth table for each compound statement. (Lesson 2-2)
4. $\sim p \wedge q$
5. $p \vee(q \wedge r)$
6. RECREATION A group of 150 students were asked what they like to do during their free time. How many students like going to the movies or shopping? (Lesson 2-2)

7. MULTIPLE CHOICE Which figure can serve as a counterexample to the conjecture below? If $\angle 1$ and $\angle 2$ share exactly one point, then they are vertical angles.

C

B

D

8. Write the converse, inverse, and contrapositive of the following conditional statement. Determine whether each related conditional is true or false. If a statement is false, find a counterexample. (Lesson 2-3)
If two angles are adjacent, then the angles have a common vertex.
9. Determine whether statement (3) follows from statements (1) and (2) by the Law of Detachment or the Law of Syllogism. If it does, state which law was used. If it does not, write invalid. (Lesson 2-4)
(1) If n is an integer, then n is a real number.
(2) n is a real number.
(3) n is an integer.

In the figure below, A, B, and C are collinear. Points A, B, C, and D lie in plane \mathcal{N}. State the postulate or theorem that can be used to show each statement is true. (Lesson 2-5)

10. A, B, and D determine plane \mathcal{N}.
11. $\overleftrightarrow{B E}$ intersects $\overleftrightarrow{A C}$ at B
12. ℓ lies in plane \mathfrak{N}.

Main Ideas

- Use algebra to write two-column proofs.
- Use properties of equality in geometry proofs.

New Vocabulary
deductive argument two-column proof formal proof

GET READY for the lesson

Lawyers develop their cases using logical arguments based on evidence to lead a jury to a conclusion favorable to their case. At the end of a trial, a lawyer makes closing remarks summarizing the evidence and testimony that they feel proves their case.
These closing arguments are similar to a proof in mathematics.

Algebraic Proof Algebra is a system with sets of numbers, operations, and properties that allow you to perform algebraic operations. The following table summarizes several properties of real numbers that you studied in algebra.

CONCEPT SUMMARY Properties of Real Numbers	
The following properties are true for any numbers a, b, and c.	
Reflexive Property	$a=a$
Symmetric Property	If $a=b$, then $b=a$.
Transitive Property	If $a=b$ and $b=c$, then $a=c$.
Addition and Subtraction Properties	If $a=b$, then $a+c=b+c$ and $a-c=b-c$.
Multiplication and Division Properties	If $a=b$, then $a \cdot c=b \cdot c$ and if $c \neq 0, \frac{a}{c}=\frac{b}{c}$.
Substitution Property	If $a=b$, then a may be replaced by b in any equation or expression.
Distributive Property	$a(b+c)=a b+a c$

The properties of equality can be used to justify each step when solving an equation. A group of algebraic steps used to solve problems form a deductive argument.

EXAMPLE Verify Algebraic Relationships

(1) Solve $3(x-2)=42$. Justify each step.

Algebraic Steps
 $3(x-2)=42$
 $3 x-6=42$
 $3 x-6+6=42+6$
 $3 x=48$
 $\frac{3 x}{3}=\frac{48}{3} \quad$ Division Property $x=16$
 Properties
 Original equation
 Distributive Property
 Addition Property
 Substitution Property
 Substitution Property
 DCHECK Yout Progress:

1. Solve $2 x+3=5$. Justify each step.

Study Tip

Mental Math

If your teacher permits you to do so, some steps may be eliminated by performing mental calculations. For example, in Example 2, statements 4 and 6 could be omitted. Then the reason for statements 5 and 7 would be Addition Property and Division Property, respectively.

Example 1 is a proof of the conditional statement If $3(x-2)=42$, then $x=16$. Notice that the column on the left is a step-by-step process that leads to a solution. The column on the right contains the reason for each statement. In geometry, a similar format is used to prove conjectures and theorems. A two-column proof, or formal proof, contains statements and reasons organized in two columns.

EXAMPLE Write a Two-Column Proof

(2) Write a two-column proof to show that if $3\left(x-\frac{5}{3}\right)=1$, then $x=2$. Statements

1. $3\left(x-\frac{5}{3}\right)=1$
2. $3 x-3\left(\frac{5}{3}\right)=1$
3. $3 x-5=1$
4. $3 x-5+5=1+5$
5. $3 x=6$
6. $\frac{3 x}{3}=\frac{6}{3}$
7. $x=2$

DCAECK Yout Progress

2. The Pythagorean Theorem states that in a right triangle $A B C$, $c^{2}=a^{2}+b^{2}$. Write a two-column proof to show that $a=\sqrt{c^{2}-b^{2}}$.

Geometric Proof Segment measures and angle measures are real numbers, so properties of real numbers can be used to discuss their relationships.

Property	Segments	Angles				
Reflexive	$A B=A B$	$m \angle 1=m \angle 1$	Symmetric	If $A B=C D$, then $C D=A B$.	If $m \angle 1=m \angle 2$, then $m \angle 2=m \angle 1$.	
:---	:---	:---				
Transitive	If $A B=C D$ and $C D=E F$, then $A B=E F$.	If $m \angle 1=m \angle 2$ and $m \angle 2=m \angle 3$, then $m \angle 1=m \angle 3$.				

STANDARDIFED TEST EXAMPLE

Test-Taking Tip

Analyzing

 Statements More than one statement may be correct. Work through each problem completely before indicating your answer.(3) If $\overline{A B} \cong \overline{C D}$, and $\overline{C D} \cong \overline{E F}$, then which of the following is a valid conclusion?

I $A B=C D$ and $C D=E F$
II $\overline{A B} \cong \overline{E F}$
III $A B=E F$
A I only
C I and III
B I and II
D I, II, and III

Read the Test Item

Determine whether the statements are true based on the given information.

Solve the Test Item

Statement I: Examine the given information, $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{E F}$. From the definition of congruent segments, $A B=C D$ and $C D=E F$. Thus, Statement I is true.

Statement II: By the definition of congruent segments, if $A B=E F$, then $\overline{A B} \cong \overline{E F}$. Statement II is true also.

Statement III: If $A B=C D$ and $C D=E F$, then $A B=E F$ by the Transitive Property. Thus, Statement III is true.

Because Statements I, II, and III are true, choice D is correct.

WedEOK Yout Progress

3. If $m \angle 1=m \angle 2$ and $m \angle 2=90$, then which of the following is a valid conclusion?
F $m \angle 1=45$
$\mathbf{H} m \angle 1+m \angle 2=180$
G $m \angle 1=90$
J $m \angle 1+m \angle 2=90$

Personal Tutor at geometryonline.com

In Example 3, each conclusion was justified using a definition or property. This process is used in geometry to verify and prove statements.

EXAMPLE Geometric Proof

TIME On a clock, the angle formed by the hands at $2: 00$ is a 60° angle. If the angle formed at 2:00 is congruent to the angle formed at 10:00, prove that the angle at $10: 00$ is a 60° angle.
Given: $m \angle 2=60$

$$
\angle 2 \cong \angle 10
$$

Prove: $m \angle 10=60$

Statements

1. $m \angle 2=60 ; \angle 2 \cong \angle 10$
2. $m \angle 2=m \angle 10$
3. $60=m \angle 10$
4. $m \angle 10=60$

Reasons

1. Given
2. Definition of congruent angles
3. Substitution
4. Symmetric Property

1check Yout Progress

4. It is given that $\angle A$ and $\angle B$ are congruent. The measure of $\angle A$ is 110 . Write a two-column proof to show that the measure of $\angle B$ is 110 .

Mcheck Your Undentanding

Example 1 State the property that justifies each statement.
(p. 112)

Example 2
(p. 112)

1. If $\frac{x}{2}=7$, then $x=14$.
2. If $x=5$ and $b=5$, then $x=b$.
3. If $X Y-A B=W Z-A B$, then $X Y=W Z$.
4. Complete the following proof.
$\begin{array}{ll}\text { Given: } & 5-\frac{2}{3} x=1 \\ \text { Prove: } & x=6\end{array}$
Prove: $x=6$
Proof:

Statements	Reasons
a. $\frac{?}{}$	a. Given
b. $3\left(5-\frac{2}{3} x\right)=3(1)$	b. $\frac{?}{?}$
c. $15-2 x=3$	c. $\frac{?}{?}$
d. $\frac{?}{\text { e. } x=6}$	d. Subtraction Property
e. ?	

Example 3 (p. 113)
5. MULTIPLE CHOICE If $\overline{J M}$ and $\overline{K N}$ intersect at Q to form $\angle J Q K$ and $\angle M Q N$, which of the following is not a valid conclusion?
A $\angle J Q K$ and $\angle M Q N$ are vertical angles.
B $\angle J Q K$ and $\angle M Q N$ are supplementary.
C $\angle J Q K \cong \angle M Q N$

D $m \angle J Q K=m \angle M Q N$

Examples 2 and 4 (pp. 112-114)

PROOF Write a two-column proof for each conditional.
6. If $25=-7(y-3)+5 y$, then $-2=y$.
7. If rectangle $A B C D$ has side lengths $A D=3$ and $A B=10$, then $A C=B D$.

HOMEWORK	HELP
For Exercises	See Examples
$8-13$	1
$14-17$	3
$18-23$	2
24,25	4

ExTRA PRACTICE
See pages 804, 829.
Math ${ }^{2} \mathrm{Jin}$ e
Self-Check Quiz at geometryonline.com

State the property that justifies each statement.
8. If $m \angle A=m \angle B$ and $m \angle B=m \angle C, m \angle A=m \angle C$.
9. If $H J+5=20$, then $H J=15$.
10. If $X Y+20=Y W$ and $X Y+20=D T$, then $Y W=D T$.
11. If $m \angle 1+m \angle 2=90$ and $m \angle 2=m \angle 3$, then $m \angle 1+m \angle 3=90$.
12. If $\frac{1}{2} A B=\frac{1}{2} E F$, then $A B=E F$.
13. $A B=A B$
14. If $2\left(x-\frac{3}{2}\right)=5$, then $2 x-3=5$.
15. If $m \angle 4=35$ and $m \angle 5=35$, then $m \angle 4=m \angle 5$.
16. If $\frac{1}{2} A B=\frac{1}{2} C D$, then $A B=C D$.
17. If $E F=G H$ and $G H=J K$, then $E F=J K$.

Complete each proof.
18. Given: $\frac{3 x+5}{2}=7$

Prove: $x=3$
Proof:
Statements \quad Reasons
a. $\frac{3 x+5}{2}=7$
b. ?
c. $3 x+5=14$
d. $3 x=9$
e. ?
a. ?
b. Multiplication Property
c. ?
d. ?
e. Division Property
19. Given: $2 x-7=\frac{1}{3} x-2$

Prove: $x=3$
Proof:

Statements	Reasons

a. ?
b. ?
c. $6 x-21=x-6$
d. ?
e. $5 x=15$
f. ?
a. Given
b. Multiplication Property
c. ?
d. Subtraction Property
e. ?
f. Division Property

PROOF Write a two-column proof.
20. If $X Z=Z Y, X Z=4 x+1$,
and $Z Y=6 x-13$, then $x=7$.

21. If $m \angle A C B=m \angle A B C$, then $\angle X C A \cong \angle Y B A$.

Real-World Link
The Formula Society of Automotive Engineers at University of California, Berkeley, holds a competition each year for the design and construction of a race car. The cars are judged on many factors, including acceleration.

Source: www.dailycal.org

H.O.T. Problems

PROOF Write a two-column proof.
22. If $-\frac{1}{2} m=9$, then $m=-18$.
23. If $5-\frac{2}{3} z=1$, then $z=6$.
24. If $4-\frac{1}{2} a=\frac{7}{2}-a$, then $a=-1$.
25. If $-2 y+\frac{3}{2}=8$, then $y=-\frac{13}{4}$.
26. PHYSICS Acceleration, distance traveled, velocity, and time are related in the formula $d=v t+\frac{1}{2} a t^{2}$. Solve for a and justify each step.
27. CHEMISTRY The Ideal Gas law is given by the formula $P V=n R T$, where $P=$ pressure, $V=$ volume, $n=$ the amount of a substance, R is a constant value, and T is the temperature. Solve the formula for T and justify each step.
28. GARDENING In the arrangement of pansies shown, the walkway divides the two sections of pansies into four beds of the same size. If $m \angle A C B=m \angle D C E$, what could you conclude about the relationship among $\angle A C B, \angle D C E, \angle E C F$, and $\angle A C G$?

29. OPEN ENDED Write a statement that illustrates the Substitution Property of Equality.
30. REASONING Compare one part of a conditional to the Given statement of a proof. What part is related to the Prove statement?
31. CHALLENGE Below is a family tree of the Gibbs family. Clara, Carol, Cynthia, and Cheryl are all daughters of Lucy. Because they are sisters, they have a transitive and symmetric relationship. That is, Clara is a sister of Carol, Carol is a sister of Cynthia, so Clara is a sister of Cynthia.

What other relationships in a family have reflexive, symmetric, or transitive relationships? Explain why. Remember that the child or children of each person are listed beneath that person's name. Consider relationships such as first cousin, ancestor or descendent, aunt or uncle, sibling, or any other relationship.
32. Writing in Math Compare proving a theorem of mathematics to proving a case in a court of law. Include a description of how evidence is used to influence jurors' conclusions in court and a description of the evidence used to make conclusions in mathematics.
33. In the diagram below, $m \angle C F E=90^{\circ}$ and $\angle A F B \cong \angle C F D$.

Which of the following conclusions does not have to be true?

A $m \angle B F D=m \angle B F D$
B $\overline{B F}$ bisects $\angle B F D$.
C $m \angle C F D=m \angle A F B$
D $\angle C F E$ is a right angle.
34. REVIEW Which expression can be used to find the values of $s(n)$ in the table?

\boldsymbol{n}	-8	-4	-1	0	1
$\boldsymbol{s}(\boldsymbol{n})$	1.00	2.00	2.75	3.00	3.25

F $-n+7$
G $-2 n+3$
H $\frac{1}{2} n+5$
J $\frac{1}{4} n+3$

Spiral Review

35. CONSTRUCTION There are four buildings on the Medfield High School Campus, no three of which stand in a straight line. How many sidewalks need to be built so that each building is directly connected to every other building? (Lesson 2-5)

Determine whether the stated conclusion is valid based on the given information. If not, write invalid. Explain your reasoning. A number is divisible by 3 if it is divisible by 6. (Lesson 2-4)
36. Given: 24 is divisible by 6 . Conclusion: 24 is divisible by 3 .
37. Given: 27 is divisible by 3 . Conclusion: 27 is divisible by 6 .
38. Given: 85 is not divisible by 3 . Conclusion: 85 is not divisible by 6 .

Write each statement in if-then form. (Lesson 2-3)
39. "He that can have patience can have what he will." (Benjamin Franklin)
40. "To be without some of the things you want is an indispensable part of happiness." (Bertrand Russell)
41. "Respect yourself and others will respect you." (Confucius)
42. "A fanatic is one who can't change his mind and won't change the subject." (Sir Winston Churchill)

CSTREADY for the Next Lesson

PREREQUISITE SKILL Find the measure of each segment. (Lesson 1-2)
43. $\overline{K L}$

44. $\overline{Q S}$

45. $\overline{W Z}$

2-7

Proving Segment Relationships

Main Ideas

- Write proofs involving segment addition.
- Write proofs involving segment congruence.

GET READY for the lesson

When leaving San Diego, the pilot said that the flight would be about 360 miles to Phoenix. When the plane left Phoenix, the pilot said that the flight would be about 1070 miles to Dallas. Distances in a straight line on a map are sometimes measured with a ruler.

Segment Addition In Lesson 1-2, you measured segments with a ruler by placing the mark for zero on one endpoint, then finding the distance to the other endpoint. This illustrates the Ruler Postulate.

POSTULATE 2.8

Ruler Postulate
The points on any line or line segment can be paired with real numbers so that, given any two points A and B on a line, A corresponds to zero, and B corresponds to a positive real number.

The Ruler Postulate can be used to further investigate line segments.

GEOMETBY LAB

Adding Segment Measures

CONSTRUCT A FIGURE

- Use The Geometer's Sketchpad to construct $\overline{A C}$.
- Place point B on $\overline{A C}$.
- Find $A B, B C$, and $A C$.

ANALYZE THE MODEL

1. What is the sum $A B+B C$?
2. Move B. Find $A B, B C$, and $A C$.
 What is the sum of $A B+B C$?
3. Repeat step 2 three times. Record your results.
4. What is true about the relationship of $A B, B C$, and $A C$?
5. Is it possible to place B on $\overline{A C}$ so that this relationship is not true?

POSTULATE 2.9

If A, B, and C are collinear and B is between A and C, then $A B+B C=A C$.

If $A B+B C=A C$, then B is between A and C.

EXAMPLE Proof With Segment Addition

(1) Prove the following.

Given: $\quad P Q=R S$

Prove: $\quad P R=Q S$

Proof:

Statements

Reasons

1. $P Q=R S$
2. $P Q+Q R=Q R+R S$
3. $P Q+Q R=P R$
$Q R+R S=Q S$
4. $P R=Q S$
5. Substitution

ICHECK Your Progress

1. Given: $\overline{A D} \cong \overline{C E}, \overline{D B} \cong \overline{E B}$

Prove: $\overline{A B} \cong \overline{C B}$

Segment Congruence In algebra, you learned about the properties of equality. The Reflexive Property of Equality states that a quantity is equal to itself. The Symmetric Property of Equality states that if $a=b$, then $b=a$. And the Transitive Property of Equality states that for any numbers a, b, and c, if $a=b$ and $b=c$, then $a=c$. These properties of equality are similar to the following properties of congruence.

THEOREM 2.2

Segment Congruence
Congruence of segments is reflexive, symmetric, and transitive.
Reflexive Property
Symmetric Property
Transitive Property

$$
\overline{A B} \cong \overline{A B}
$$

If $\overline{A B} \cong \overline{C D}$, then $\overline{C D} \cong \overline{A B}$.
If $\overline{A B} \cong \overline{C D}$, and $\overline{C D} \cong \overline{E F}$, then $\overline{A B} \cong \overline{E F}$.

You will prove the first two properties in Exercises 4 and 5.

Vocabulary Link Symmetric Everyday Use balanced or proportional
Math Use if $a=b$, then

PROOF Transitive Property of Congruence

Given: $\overline{M N} \cong \overline{P Q}$
$\overline{P Q} \cong \overline{R S}$
Prove: $\overline{M N} \cong \overline{R S}$

Proof:

Method 1 Paragraph Proof

Since $\overline{M N} \cong \overline{P Q}$ and $\overline{P Q} \cong \overline{R S}, M N=P Q$ and $P Q=R S$ by the definition of congruent segments. By the Transitive Property of Equality, $M N=R S$. Thus, $\overline{M N} \cong \overline{R S}$ by the definition of congruent segments.

Method 2 Two-Column Proof

Statements

1. $\overline{M N} \cong \overline{P Q}, \overline{P Q} \cong \overline{R S}$
2. $M N=P Q, P Q=R S$
3. $M N=R S$
4. $\overline{M N} \cong \overline{R S}$

Reasons

1. Given
2. Definition of congruent segments
3. Transitive Property
4. Definition of congruent segments

Theorems about congruence can be used to prove segment relationships.

EXAMPLE Proof With Segment Congruence

(2) Prove the following.

Given: $\overline{J K} \cong \overline{K L}, \overline{H J} \cong \overline{G H}, \overline{K L} \cong \overline{H J}$
Prove: $\quad \overline{G H} \cong \overline{J K}$
Proof:
Method 1 Paragraph Proof

It is given that $\overline{J K} \cong \overline{K L}$ and $\overline{K L} \cong \overline{H J}$. Thus, $\overline{J K} \cong \overline{H J}$ by the Transitive Property. It is also given that $\overline{H J} \cong \overline{G H}$. By the Transitive Property, $\overline{J K} \cong \overline{G H}$. Therefore, $\overline{\mathrm{GH}} \cong \overline{J K}$ by the Symmetric Property.

Method 2 Two-Column Proof

Statements

1. $\overline{J K} \cong \overline{K L}, \overline{K L} \cong \overline{H J}$
2. $\overline{J K} \cong \overline{H J}$
3. $\overline{H J} \cong \overline{G H}$
4. $\overline{J K} \cong \overline{G H}$
5. $\overline{G H} \cong \overline{J K}$

2CHECK Your Progress.

2. Given: $\overline{H I} \cong \overline{T U}$
$\overline{H J} \cong \overline{T V}$
Prove: $\overline{I J} \cong \overline{U V}$

Reasons

1. Given
2. Transitive Property
3. Given
4. Transitive Property
5. Symmetric Property

ruline Personal Tutor at geometryonline.com

Your Indershanding

Example 1 (p. 119)

1. Copy and complete the proof.

Given: $\overline{P Q} \cong \overline{R S}, \overline{Q S} \cong \overline{S T}$
Prove: $\overline{P S} \cong \overline{R T}$
Proof:

Statements

a.
a. ? ?
b. $P Q=R S, Q S=S T$
c. $P S=P Q+Q S, R T=R S+S T$
d. ?
e. ?
f. $\overline{P S} \cong \overline{R T}$

Example 2 (p. 120)
2. PROOF Prove the following.

Given: $\overline{A P} \cong \overline{C P}$ $\overline{B P} \cong \overline{D P}$
Prove: $\overline{A B} \cong \overline{C D}$

Exercises

HOMEWORK	
For Exercises	See Examples
3,6	1
$4,5,7,8$	2

3. Copy and complete the proof.

Given: $\overline{W Y} \cong \overline{Z X}$
A is the midpoint of $\overline{W Y}$.
A is the midpoint of $\overline{Z X}$.
Prove: $\overline{W A} \cong \overline{\mathrm{ZA}}$

Proof:

Statements

a. $\overline{W Y} \cong \overline{Z X}$
A is the midpoint of $\overline{W Y}$.
A is the midpoint of $\overline{Z X}$.
b. $W Y=Z X$
c. \quad ?
d. $W Y=W A+A Y, Z X=Z A+A X$
e. $W A+A Y=Z A+A X$
f. $W A+W A=Z A+Z A$
g. $2 W A=2 Z A$
h. ?
i. $\overline{W A} \cong \overline{Z A}$

Reasons

a. Given
b. ?
c. ?
d. Substitution Property
e. Substitution Property
f. ?

Prove the following.

4. Reflexive Property of Congruence (Theorem 2.2)
5. Symmetric Property of Congruence (Theorem 2.2)

PROOF Prove the following.

6. If $A B=B C$, then $A C=2 B C$.

7. If $\overline{L M} \cong \overline{P N}$ and $\overline{X M} \cong \overline{X N}$, then $\overline{L X} \cong \overline{P X}$.

8. DESIGN The front of a building has a triangular window. If $\overline{A B} \cong \overline{D E}$ and C is the midpoint of $\overline{B D}$, prove that $\overline{A C} \cong \overline{C E}$.

9. If $\overline{A B} \cong \overline{B C}$ and $\overline{P C} \cong \overline{Q B}$, then $\overline{A B} \cong \overline{A C}$.

10. If $\overline{X Y} \cong \overline{W Z}$ and $\overline{W Z} \cong \overline{A B}$, then $\overline{X Y} \cong \overline{A B}$.

11. LIGHTING In the light fixture, $\overline{A B} \cong \overline{E F}$ and $\overline{B C} \cong \overline{D E}$. Prove that $\overline{A C} \cong \overline{D F}$.

H.O.T. Problems.
12. OPEN ENDED Draw three congruent segments, and illustrate the Transitive Property using these segments.
13. REASONING Choose two cities from a United States road map. Describe the distance between the cities using the Reflexive Property.
14. CHALLENGE Given that $\overline{L N} \cong \overline{R T}, \overline{R T} \cong \overline{Q O}, \overline{L Q} \cong \overline{N O}$, $\overline{M P} \cong \overline{N O}, S$ is the midpoint of $\overline{R T}, M$ is the midpoint of $\overline{L N}$, and P is the midpoint of $\overline{Q O}$, list three statements that you could prove using the postulates, theorems, and definitions that you have learned.

15. Writing in Math How can segment relationships be used for travel? Include an explanation of how a passenger can use the distances the pilot announced to find the total distance from San Diego to Dallas and an explanation of why the Segment Addition Postulate may or may not be useful when traveling.

STANDARDIZED TEST PRACIICE

16. Which reason can be used to justify Statement 5 in the proof below?
Given: $\overline{A B} \cong \overline{B C}, \overline{B C} \cong \overline{C D}$
Prove: $3 A B=A D$

Statements

1. $\overline{A B} \cong \overline{B C}, \overline{B C} \cong \overline{C D}$
2. Given
3. $\overline{A B} \cong \overline{C D}$
4. $A B=B C, B C=C D$
5. ?
6. $C D=B C$
7. $A B+B C+C D=A D$
8. $A B+A B+A B=A D$
9. $3 A B=A D$
. Subst.

A Angle Addition Postulate
B Segment Congruence
C Segment Addition Postulate
D Midpoint Theorem
17. REVIEW Haru made a scale model of the park near his house. Every inch represents 5 feet. If the main sidewalk in his model is 45 inches long, how long is the actual sidewalk in the park?
F 225 ft
G 125 ft
H 15 ft
J 5 ft
18. REVIEW Which expression is equivalent to $\frac{12 x^{-4}}{4 x^{-8}}$?
A $\frac{1}{3 x^{4}}$
B $3 x^{4}$
C $8 x^{2}$
D $\frac{x^{4}}{3}$

Spiral Review

State the property that justifies each statement. (Lesson 2-6)
19. If $m \angle P+m \angle Q=110$ and $m \angle R=110$, then $m \angle P+m \angle Q=m \angle R$.
20. If $x(y+z)=a$, then $x y+x z=a$.
21. If $n-17=39$, then $n=56$.
22. If $c v=m d$ and $m d=15$, then $c v=15$.

Determine whether each statement is always, sometimes, or never true.
Explain. (Lesson 2-5)
23. A midpoint divides a segment into two noncongruent segments.
24. Three lines intersect at a single point.
25. The intersection of two planes forms a line.
26. If the perimeter of rectangle $A B C D$ is 44 centimeters, find x and the dimensions of the rectangle. (Lesson 1-6)

GCT READY for the Next Lesson

PREREQUISITE SKILL Find x. (Lesson 1-5)
27.

28.

29.

Proving Angle Relationships

Main Ideas

- Write proofs involving supplementary and complementary angles.
- Write proofs involving congruent and right angles.

GET READY for the Lesson

Notice that when a pair of scissors is opened, the angle formed by the two blades, $\angle 1$, and the angle formed by a blade and a handle, $\angle 2$, are a linear pair. Likewise, the angle formed by a blade and a
 handle, $\angle 2$, and the angle formed by the two handles, $\angle 3$, also forms a linear pair.

Supplementary and Complementary Angles Recall that when you measure angles with a protractor, you position the protractor so that one of the rays aligns with zero degrees and then determine the position of the second ray. To draw an angle of a given measure, align a ray with the zero degree mark and use the desired angle measure to position the second ray. The Protractor Postulate ensures that there is one ray you could draw with a given ray to create an angle with a given measure.

POSTULATE 2.10

Given $\overrightarrow{A B}$ and a number r between 0 and 180 , there is exactly one ray with endpoint A, extending on either side of $\overrightarrow{A B}$, such that the measure of the angle formed is r.

In Lesson 2-7, you learned about the Segment Addition Postulate. A similar relationship exists between the measures of angles.

POSTULATE 2.11

Angle Addition Postulate
If R is in the interior of $\angle P Q S$, then $m \angle P Q R+m \angle R Q S=m \angle P Q S$.

If $m \angle P Q R+m \angle R Q S=m \angle P Q S$, then R is in the interior of $\angle P Q S$.

You can use the Angle Addition Postulate to solve problems involving angle measures.

Real-World Link
The Grand Union Flag was the first flag used by the colonial United States that resembles the current flag. The square in the corner resembles the flag of Great Britain.

Source: www.usflag.org

Review

Vocabulary

Supplementary

Angles two angles with measures that add to 180 (Lesson 1-5)

Complementary

Angles two angles with measures that add to 90 (Lesson 1-5)

EXAMPLE Angle Addition

(1) HISTORY The Grand Union Flag at the left contains several angles. If $m \angle A B D=44$ and $m \angle A B C=88$, find $m \angle D B C$.

$$
\begin{aligned}
m \angle A B D+m \angle D B C & =m \angle A B C & & \text { Angle Addition Postulate } \\
44+m \angle D B C & =88 & & m \angle A B D=44, m \angle A B C=88 \\
m \angle D B C & =44 & & \text { Subtraction Property }
\end{aligned}
$$

LCHECK Yout Progress

1. Find $m \angle N K L$ if $m \angle J K L=2 m \angle J K N$.

The Angle Addition Postulate can be used with other angle relationships to provide additional theorems relating to angles.

THEOREMS

2.3 Supplement Theorem If two angles form a linear pair, then they are supplementary angles.

2.4 Complement Theorem If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary angles.

You will prove Theorems 2.3 and 2.4 in Exercises 16 and 17, respectively.

EXAMPLE Supplementary Angles

(2) If $\angle 1$ and $\angle 2$ form a linear pair and $m \angle 2=67$, find $m \angle 1$.

$$
\begin{aligned}
& m \angle 1+m \angle 2=180 \quad \text { Supplement Theorem } \\
& m \angle 1+67=180 \quad m \angle 2=67 \\
& m \angle 1=113 \text { Subtraction Property }
\end{aligned}
$$

Whaterk Yout Progress

2A. Find the measures of $\angle 3, \angle 4$, and $\angle 5$ if $m \angle 3=x+20, m \angle 4=x+40$, and $m \angle 5=x+30$.
2B. If $\angle 6$ and $\angle 7$ form a linear pair and $m \angle 6=3 x+32$ and $m \angle 7=5 x+12$, find $x, m \angle 6$, and $m \angle 7$.

Congruent and Right Angles The properties of algebra that applied to the congruence of segments and the equality of their measures also hold true for the congruence of angles and the equality of their measures.

THEOREM 2.5

Congruence of angles is reflexive, symmetric, and transitive.
Reflexive Property $\angle 1 \cong \angle 1$
Symmetric Property If $\angle 1 \cong \angle 2$, then $\angle 2 \cong \angle 1$.
Transitive Property If $\angle 1 \cong \angle 2$, and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$.

You will prove the Reflexive and Transitive Properties of Angle Congruence in Exercises 18 and 19.

PROOF Symmetric Property of Congruence

Given: $\angle A \cong \angle B$
Prove: $\angle B \cong \angle A$

Method 1

Paragraph Proof:
We are given $\angle A \cong \angle B$. By the definition of congruent angles, $m \angle A=m \angle B$. Using the Symmetric Property, $m \angle B=m \angle A$. Thus, $\angle B \cong \angle A$ by the definition of congruent angles.

Method 2

Two-Column Proof:

Statements

1. $\angle A \cong \angle B$
2. $m \angle A=m \angle B$
3. $m \angle B=m \angle A$
4. $\angle B \cong \angle A$

Reasons

1. Given
2. Definition of Congruent Angles
3. Symmetric Property
4. Definition of Congruent Angles

Algebraic properties can be applied to prove theorems for congruence relationships involving supplementary and complementary angles.

THEOREMS

2.6 Angles supplementary to the same angle or to congruent angles are congruent.

Abbreviation: \&s suppl. to same \angle or $\cong \angle s$ are \cong.
Example: If $m \angle 1+m \angle 2=180$ and $m \angle 2+$ $m \angle 3=180$, then $\angle 1 \cong \angle 3$.
2.7 Angles complementary to the same angle or to congruent angles are congruent.
Abbreviation: \&s compl. to same \angle or $\cong \angle s$ are \cong.

Example: \quad If $m \angle 1+m \angle 2=90$ and $m \angle 2+$ $m \angle 3=90$, then $\angle 1 \cong \angle 3$.

PROOF

Theorem 2.7
Given: $\angle 1$ and $\angle 3$ are complementary. $\angle 2$ and $\angle 3$ are complementary.
Prove: $\angle 1 \cong \angle 2$

Proof:

Reasons

Statements

1. $\angle 1$ and $\angle 3$ are complementary. $\angle 2$ and $\angle 3$ are complementary.
2. $m \angle 1+m \angle 3=90$
$m \angle 2+m \angle 3=90$
3. $m \angle 1+m \angle 3=m \angle 2+m \angle 3$
4. $m \angle 3=m \angle 3$
5. $m \angle 1=m \angle 2$
6. $\angle 1 \cong \angle 2$
7. Given
8. Definition of complementary angles
9. Substitution
10. Reflexive Property
11. Subtraction Property
12. Definition of congruent angles

EXAMPLE Use Supplementary Angles

(3) In the figure, $\angle 1$ and $\angle 2$ form a linear pair and $\angle 2$ and $\angle 3$ form a linear pair. Prove that $\angle 1$ and $\angle 3$ are congruent.
Given: $\angle 1$ and $\angle 2$ form a linear pair. $\angle 2$ and $\angle 3$ form a linear pair.
Prove: $\angle 1 \cong \angle 3$

Proof:

Statements

1. $\angle 1$ and $\angle 2$ form a linear pair. $\angle 2$ and $\angle 3$ form a linear pair.
2. $\angle 1$ and $\angle 2$ are supplementary. $\angle 2$ and $\angle 3$ are supplementary.
3. $\angle 1 \cong \angle 3$

Reasons

1. Given
2. Supplement Theorem
3. \measuredangle suppl. to same \angle or $\cong \measuredangle$ are \cong.

12HECK Your Progress

3. In the figure, $\angle A B E$ and $\angle D B C$ are right angles. Prove that $\angle A B D \cong \angle E B C$.

Personal Tutor at geometryonline.com

Note that in Example 3, $\angle 1$ and $\angle 3$ are vertical angles. The conclusion in the example is a proof for the following theorem.

Vertical Angles Theorem
If two angles are vertical angles, then they are congruent.

Abbreviation: Vert. \& are \cong.

EXAMPLE Vertical Angles

4 If $\angle 1$ and $\angle 2$ are vertical angles and $m \angle 1=x$ and $m \angle 2=228-3 x$, find $m \angle 1$ and $m \angle 2$.

$$
\begin{aligned}
\angle 1 & \cong \angle 2 & & \text { Vertical Angles Theorem }
\end{aligned} \begin{aligned}
& \begin{array}{l}
\text { Substitute to find } \\
\text { angle measures. }
\end{array} \\
m \angle 1 & =m \angle 2
\end{aligned}
$$

Substitute to find the

DaHECK Yout Progress:

4. If $\angle 3$ and $\angle 4$ are vertical angles, $m \angle 3=6 x+2$, and $m \angle 4=8 x-14$, find $m \angle 3$ and $m \angle 4$.

You can create right angles and investigate congruent angles by paper folding.

GEOMETRY LAB

Right Angles

maKE A MODEL

- Fold the paper so that one corner is folded downward.

- Fold along the crease so that the top edge meets the side edge.
- Unfold the paper and measure each of the angles.
- Repeat the activity three more times.

ANALYZE THE MODEL

1. What do you notice about the lines formed?
2. What do you notice about each pair of adjacent angles?
3. What are the measures of the angles formed?
4. MAKE A CONJECTURE What is true about perpendicular lines?

The following theorems support the conjectures you made in the Geometry Lab.

THEOREMS

Right Angle Theorems

2.9 Perpendicular lines intersect to form four right angles.
2.10 All right angles are congruent.
2.11 Perpendicular lines form congruent adjacent angles.
2.12 If two angles are congruent and supplementary, then each angle is a right angle.
2.13 If two congruent angles form a linear pair, then they are right angles.

Find the measure of each numbered angle.

Example 1 (p. 125)

Example 2 (p. 125)

Example 3 (p. 127)

1. $\angle 6$ and $\angle 8$ are complementary, $m \angle 8=47$

2. $m \angle 11=x-4, m \angle 12=2 x-5$

PROOF Copy and complete the proof of Theorem 2.6.
Given: $\angle 1$ and $\angle 2$ are supplementary. $\angle 3$ and $\angle 4$ are supplementary. $\angle 1 \cong \angle 4$

Prove: $\angle 2 \cong \angle 3$

Proof:

Statements

a. $\angle 1$ and $\angle 2$ are supplementary. $\angle 3$ and $\angle 4$ are supplementary. $\angle 1 \cong \angle 4$
b. $m \angle 1+m \angle 2=180$ $m \angle 3+m \angle 4=180$
c. $m \angle 1+m \angle 2=m \angle 3+m \angle 4$
d. $m \angle 1=m \angle 4$
e. $m \angle 2=m \angle 3$
f. $\angle 2 \cong \angle 3$
4. PROOF Write a two-column proof.

Given: $\begin{aligned} & \overrightarrow{V X} \text { bisects } \angle W V Y . \\ & \overrightarrow{V Y} \text { bisects } \angle X V Z .\end{aligned}$
Prove: $\angle W V X \cong \angle Y V Z$

Excrises

HOMEWORK HELP

For Exercises	See Examples
$5-7$	1
$8-10$	2
$14-19$	3
$11-13$	4

Find the measure of each numbered angle.
5. $m \angle 1=64$

6. $m \angle 3=38$

7. $\angle 7$ and $\angle 8$ are complementary. $\angle 5 \cong \angle 8$ and $m \angle 6=29$.

Find the measure of each numbered angle.
8. $m \angle 9=2 x-4$,
$m \angle 10=2 x+4$
9. $m \angle 11=4 x$,
$m \angle 12=2 x-6$

10. $m \angle 19=100+20 x$,
$m \angle 20=20 x$

11. $m \angle 15=x$,
$m \angle 16=6 x-290$

12. $m \angle 17=2 x+7$, $m \angle 18=x+30$

13. $m \angle 13=2 x+94$, $m \angle 14=7 x+49$

NORTH

Real-World Link Interstate highways that run from north to south are odd-numbered with the lowest numbers in the west. East-west interstates are even-numbered and begin in the south.
Source: www.infoplease.com

EXIRA PRACTICE

See pages 804, 829.
Math ITIII 3
Self-Check Quiz at geometryonline.com
H.O.T. Problems.

PROOF Write a two-column proof.
14. Given: $\angle A B D \cong \angle Y X Z$

Prove: $\angle C B D \cong \angle W X Z$

15. Given: $m \angle R S W=m \angle T S U$
Prove: $m \angle R S T=m \angle W S U$

Write a proof for each theorem.
16. Supplement Theorem
17. Complement Theorem
18. Reflexive Property of Angle Congruence
19. Transitive Property of Angle Congruence

PROOF Use the figure to write a proof of each theorem.
20. Theorem 2.9
21. Theorem 2.10
22. Theorem 2.11
23. Theorem 2.12
24. Theorem 2.13
25. RIVERS Tributaries of rivers sometimes form a linear pair of angles when they meet the main river. The Yellowstone River forms the linear pair $\angle 1$ and $\angle 2$ with the Missouri River. If $m \angle 1$ is 28, find $m \angle 2$.

26. HIGHWAYS Near the city of Hopewell, Virginia, Route 10 runs perpendicular to Interstate 95 and Interstate 295. Show that the angles at the intersections of Route 10 with Interstate 95 and Interstate 295 are congruent.

27. OPEN ENDED Draw three congruent angles. Use these angles to illustrate the Transitive Property for angle congruence.
28. FIND THE ERROR Tomas and Jacob wrote equations involving the angle measures shown. Who is correct? Explain your reasoning.

REASONING Determine whether each statement is always, sometimes, or never true. Explain.
29. Two angles that are nonadjacent are vertical.
30. Two acute angles that are congruent are complementary to the same angle.
31. CHALLENGE What conclusion can you make about the sum of $m \angle 1$ and $m \angle 4$ if $m \angle 1=m \angle 2$ and $m \angle 3=m \angle 4$? Explain.

32. Writing in Math Refer to page 124. Describe how scissors illustrate supplementary angles. Is the relationship the same for two angles complementary to the same angle?

STANDARDIFED TEST PRACIICE

33. The measures of two complementary angles are in the ratio 4:1. What is the measure of the smaller angle?
A 15
B 18
C 24
D 36
34. REVIEW Simplify
$4(3 x-2)(2 x+4)+3 x^{2}+5 x-6$.
F $9 x^{2}+3 x-14$
G $9 x^{2}+13 x-14$
H $27 x^{2}+37 x-38$
J $27 x^{2}+27 x-26$

Spiral Review

PROOF Write a two-column proof. (Lesson 2-7)
35. Given: G is between F and H.
H is between G and J.
Prove: $F G+G J=F H+H J$

36. Given: X is the midpoint of $\overline{W Y}$.

Prove: $W X+Y Z=X Z$

37. PHOTOGRAPHY Film is fed through a camera by gears that catch the perforation in the film. The distance from the left edge of the film, A, to the right edge of the image, C, is the same as the distance from the left edge of the image, B, to the right edge of the film, D. Show that the two perforated strips are the same width. (Lesson 2-6)

aupres, Study Guide and Review

FOIDAELES Sich frrmitr

Be sure the following Key Concepts are noted in your Foldable.

Key Concepts

Inductive Reasoning and Logic (Lessons 2-1 and 2-2)

- If a statement is represented by p, then not p is the negation of the statement.
- A conjunction is a compound statement formed by joining two or more statements with the word and.
- A disjunction is a compound statement formed by joining two or more statements with the word or.
Conditional Statements (Lesson 2-3)
- An if-then statement is written in the form if p, then q in which p is the hypothesis, and q is the conclusion.
- The converse is formed by exchanging the hypothesis and conclusion of the conditional.
- The inverse is formed by negating both the hypothesis and conclusion of the conditional.
- The contrapositive is formed by negating both the hypothesis and conclusion of the converse statement.

Deductive Reasoning (Lesson 2-4)

- Law of Detachment: If $p \rightarrow q$ is true and p is true, then q is also true.
- Law of Syllogism: If $p \rightarrow q$ and $q \rightarrow r$ are true, then $p \rightarrow r$ is also true.

Proof (Lessons 2-5 through 2-8)

- State what is to be proven.
- List the given information.
- If possible, draw a diagram.
- State what is to be proved.
- Develop of system of deductive reasoning.

Key Vocabulary

conclusion (p. 91)
conditional statement (p. 91)
conjecture (p. 78)
conjunction (p. 84)
contrapositive (p.93)
converse (p. 93)
counterexample (p. 79)
deductive argument (p. 111)
deductive reasoning
(p. 99)
disjunction (p.84)
hypothesis (p. 91)
if-then statement (p. 91) inductive reasoning (p.78) inverse (p. 93) negation (p. 83) paragraph proof (p. 106) postulate (p. 105) proof (p. 106)
theorem (p. 106) truth value (p. 83) two-column proof (p. 112)

Vocabulary Check

State whether each sentence is true or false. If false, replace the underlined word or number to make a true sentence.

1. Theorems are accepted as true.
2. A disjunction is true only when both statements in it are true.
3. In a two-column proof, the properties that justify each step are called reasons.
4. Inductive reasoning uses facts, rules, definitions, or properties to reach logical conclusions.
5. The Reflexive Property of Equality states that for every number $a, a=a$.
6. A negation is another term for axiom.
7. To show that a conjecture is false you would give a counterexample.
8. An if-then statement consists of a conjecture and a conclusion.
9. The contrapositive of a conditional is formed by exchanging the hypothesis and conclusion of the conditional statement.
10. A disjunction is formed by joining two or more sentences with the word or.

Lesson-by-Lesson Review

2-1 Inductive Reasoning and Conjecture (pp. 78-82)

Make a conjecture based on the given information. Draw a figure to illustrate your conjecture.
11. $\angle A$ and $\angle B$ are supplementary.
12. X, Y, and Z are collinear and $X Y=Y Z$.
13. TRAFFIC While driving on the freeway, Tonya noticed many cars ahead of her had stopped. So she immediately took the next exit. Make a conjecture about why Tonya chose to exit the freeway.

Example 1 Given that points P, Q, and R are collinear, determine whether the conjecture that Q is between P and R is true or false. If the conjecture is false, give a counterexample.

The figure below can be used to disprove the conjecture. In this case, R is between P and Q. Since we can find a counterexample, the conjecture is false.

2-2 Logic (pp. 83-90)

Use the following statements to write a compound statement for each conjunction or disjunction. Then find its truth value.
$p:-1>0$
q : In a right triangle with right angle C, $a^{2}+b^{2}=c^{2}$.
r : The sum of the measures of two supplementary angles is 180°.
14. p and $\sim q$
15. $\sim p \vee \sim r$
16. PHONES The results of a survey about phone service options are shown below. How many customers had both call waiting and caller ID?

Example 2 Use the following statements to write a compound statement for the conjunction and disjunction below. Then find each truth value.
$p: \sqrt{15}=5$
q : The measure of a right angle equals 90.
a. p and q
$\sqrt{15}=5$, and the measure of a right angle equals 90 .
p and q is false because p is false and q is true.
b. $p \vee q$
$\sqrt{15}=5$, or the measure of a right angle equals 90 .
$p \vee q$ is true because q is true. It does not matter that p is false.

©HAPT*)
 2
 Study Guide and Review

2-3 Conditional Statements (pp. 91-97)

Write the converse, inverse, and contrapositive of each conditional.
Determine whether each related conditional is true or false. If a statement is false, find a counterexample.
17. March has 31 days.
18. If an ordered pair for a point has 0 for its x-coordinate, then the point lies on the y-axis.

TEMPERATURE Find the truth value of the following statement for each set of conditions.
Water freezes when the temperature is at $\operatorname{most} 0^{\circ} \mathrm{C}$.
19. Water freezes at $-10^{\circ} \mathrm{C}$.
20. Water freezes at $15^{\circ} \mathrm{C}$.
21. Water does not freeze at $-2^{\circ} \mathrm{C}$.
22. Water does not freeze at $30^{\circ} \mathrm{C}$.

Example 3 Identify the hypothesis and conclusion of the statement The intersection of two planes is a line. Then write the statement in if-then form.

Hypothesis: two planes intersect
Conclusion: their intersection is a line
If two planes intersect, then their intersection is a line.

Example 4 Write the converse of the statement All fish live under water.
Determine whether the converse is true or false. If it is is false, find a counterexample.
Converse: If it lives under water, it is a fish. False; dolphins live under water, but are not fish.

2-4 Deductive Reasoning (pp. 99-104)

Determine whether statement (3) follows from statements (1) and (2) by the Laws of Detachment or Syllogism. If so, state which law was used. If not, write invalid.
23. (1) If a student attends North High School, then he or she has an ID number.
(2) Josh attends North High School.
(3) Josh has an ID number.
24. (1) If a rectangle has four congruent sides, then it is a square.
(2) A square has diagonals that are perpendicular.
(3) A rectangle has diagonals that are perpendicular.

Example 5 Use the Law of Syllogism to determine whether a valid conclusion can be reached from the following statements.
(1) If a body in our solar system is the Sun, then it is a star.
(2) Stars are in constant motion.
p : A body in our solar system is the Sun.
q : It is a star.
r : Stars are in constant motion.
Statement (1): $p \rightarrow q$
Statement (2): $q \rightarrow r$
Since the given statements are true, use the Law of Syllogism to conclude $p \rightarrow r$. That is, If a body in our solar system is the Sun, then it is in constant motion.

2-5 Postulates and Paragraph Proofs
 (pp. 105-109)

Determine whether each statement is always, sometimes, or never true. Explain.
25. The intersection of two different lines is a line.
26. If P is the midpoint of $\overline{X Y}$, then $X P=P Y$.
27. Four points determine six lines.
28. If $M X=M Y$, then M is the midpoint of $\overline{X Y}$.
29. HAMMOCKS Maurice has six trees in a regular hexagonal pattern in his backyard. How many different possibilities are there for tying his hammock to any two of those trees?

Example 6 Determine whether each statement is always, sometimes, or never true. Explain.
Two points determine a line.
According to a postulate relating to points and lines, two points determine a line. Thus, the statement is always true.
If two angles are right angles, they are adjacent.
If two right angles form a linear pair, then they would be adjacent. This statement is sometimes true.

2-6 Algebraic Proof (pp. 111-117)

State the property that justifies each statement.
30. If $3(x+2)=6$, then $3 x+6=6$.
31. If $10 x=20$, then $x=2$.
32. If $A B+20=45$, then $A B=25$.
33. If $3=C D$ and $C D=X Y$, then $3=X Y$.

Write a two-column proof.

34. If $5=2-\frac{1}{2} x$, then $x=-6$.
35. If $x-1=\frac{x-10}{-2}$, then $x=4$.
36. If $A C=A B, A C=4 x+1$, and $A B=6 x-13$, then $x=7$.
37. If $M N=P Q$ and $P Q=R S$, then $M N=R S$.
38. BIRTHDAYS Mark has the same birthday as Cami. Cami has the same birthday as Briana. Which property would show that Mark has the same birthday as Briana?

Example 7

Given: $2 x+6=3+\frac{5}{3} x$
Prove: $x=-9$
Proof:

Statements

Reasons

1. $2 x+6=3+\frac{5}{3} x$
2. $3(2 x+6)=3\left(3+\frac{5}{3} x\right)$
3. $6 x+18=9+5 x$
4. $6 x+18-5 x=9+$ $5 x-5 x$
5. $x+18=9$
6. $x+18-18=9-18$
7. $x=-9$
8. Given
9. Multiplication Property
10. Distributive Property
11. Subtraction Property
12. Substitution
13. Subtraction Property
14. Substitution

Study Guide and Review

2-7 Proving Segment Relationships (pp. 118-123)

PROOF Write a two-column proof.
39. Given: $B C=E C$,
$C A=C D$
Prove: $B A=D E$

40. Given: $A B=C D$

Prove: $A C=B D$

41. KANSAS The distance from Salina to Kansas City is represented by $A B$, and the distance from Wichita to Kansas City is represented by $C B$. If $A B=C B$, M is the midpoint of $A B$, and N is the midpoint of $C D$, prove $A M=C N$.

Example 8 Write a two-column proof.

Given: $Q T=R T, T S=T P$
Prove: $Q S=R P$
Proof:

Statements	Reasons
1. $Q T=R T, T S=T P$	1. Given
2. $Q T+T S=R T+T S$	2. Addition Prop.

3. $Q T+T S=R T+T P$
4. $Q T+T S=Q S$, $R T+T P=R P$
5. $Q S=R P$
6. Substitution
7. Seg. Add. Post.
8. Substitution

Find the measure of each angle.
42. $\angle 6$
43. $\angle 7$
44. $\angle 8$

45. PROOF Write a two-column proof.

Given: $\angle 1$ and $\angle 2$ form a linear pair $m \angle 2=2(m \angle 1)$
Prove: $m \angle 1=60$

Example 9 Find the measure of each numbered angle if $m \angle 3=55$.

$m \angle 1=55$, since $\angle 1$ and $\angle 3$ are vertical angles.
$\angle 2$ and $\angle 3$ form a linear pair.

$$
\begin{aligned}
55+m \angle 2 & =180 & & \text { Def. of suppl. }\llcorner\text { ® } \\
m \angle 2 & =180-55 & & \text { Subtract. } \\
m \angle 2 & =125 & & \text { Simplify. }
\end{aligned}
$$

2 Practice Test

Determine whether each conjecture is true or false. Explain your answer and give a counterexample for any false conjecture.

1. Given: $\angle A \cong \angle B$

Conjecture: $\angle B \cong \angle A$
2. Given: y is a real number.

Conjecture: $-y>0$
3. Given: $3 a^{2}=48$

Conjecture: $a=4$
Use the following statements to write a compound statement for each conjunction or disjunction. Then find its truth value.
$p:-3>2$
$q: 3 x=12$ when $x=4$.
r : An equilateral triangle is also equiangular.
4. p and q
5. p or q
6. $p \vee(q \wedge r)$
7. ADVERTISING Identify the hypothesis and conclusion of the following statement. Then write it in if-then form.
Hard-working people deserve a great vacation.
Determine whether statement (3) follows from statements (1) and (2) by the Law of Detachment or the Law of Syllogism. If it does, state which law was used. If it does not, write invalid.
8. (1) Perpendicular lines intersect.
(2) Lines m and n are perpendicular.
(3) Lines m and n intersect.
9. (1) If n is an integer, then n is a real number.
(2) n is a real number.
(3) n is an integer.

Find the measure of each numbered angle.
10. $\angle 1$
11. $\angle 2$
12. $\angle 3$

PROOF Write the indicated type of proof.
13. two-column

If $y=4 x+9$ and $x=2$, then $y=17$.
14. two-column

If $2(n-3)+5=3(n-1)$, prove that $n=2$.
15. paragraph proof

Given: $A M=C N, M B=N D$
Prove: $A B=C D$
16. paragraph proof

If M is the midpoint of $\overline{A B}$, and Q is the
midpoint of $\overline{A M}$, then $A Q=\frac{1}{4} A B$.

Determine whether each statement is always, sometimes, or never true. Explain.
17. Two angles that form a right angle are complementary.
18. Two angles that form a linear pair are congruent.

Identify the hypothesis and conclusion of each statement and write each statement in if-then form. Then write the converse, inverse, and contrapositive of each conditional.
19. An apple a day keeps the doctor away.
20. A rolling stone gathers no moss.
21. MULTIPLE CHOICE Refer to the following statements.
p : There are 52 states in the United States.
q: $12+8=20$
r : A week has 8 days.

Which compound statement is true?
A p and q
B p or q
C p or r
D q and r

Standardized Test Practice

Cumulative, Chapters 1-2

Read each question. Then fill in the correct answer on the answer document provided by your teacher or on a sheet of paper.

1. "Two lines that do not intersect are always parallel."
Which of the following best describes a counterexample to the assertion above?
A coplanar lines
B parallel lines
C perpendicular lines
D skew lines
2. Consider the following statements about the figure shown below.

$p: \angle A B C$ is an acute angle.
q: $\angle A B C$ and $\angle C B D$ are supplementary angles.
$r: m \angle A B E$ is greater than 90°.
Which of the following compound statements is not true?
F $p \vee q$
$\mathbf{G} \sim q \wedge r$
$\mathbf{H} \sim r \wedge \sim q$
$\mathrm{J} \sim p \vee \sim q$
3. Which of the following best describes an axiom?
A a conjecture made using examples
B a conjecture made using facts, rules, definition, or properties
C a statement that is accepted as true
D a statement or conjecture that has been shown to be true
4. Determine which statement follows logically from the given statements.
If it rains today, the game will be cancelled. Cancelled games are made up on Saturdays.
F If a game is cancelled, it was because of rain.

G If it rains today, the game will be made up on Saturday.
H Some cancelled games are not made up on Saturdays.
J If it does not rain today, the game will not be made up on Saturday.

TESTGAKENGTIP

Question 4 When answering a multiple-choice question, always read every answer choice and eliminate those you decide are definitely wrong. This way, you may deduce the correct answer.
5. Which of the following statements is the contrapositive of the conditional statement: If the sum of the measures of the angles of a polygon is 180°, then the polygon is a triangle?
A If a polygon is not a triangle, then the sum of the measures of the angles of the polygon is not 180°.
B If the sum of the measures of the angles of polygon is not 180°, then the polygon is not a triangle.
C If a polygon is a triangle, then the sum of the measures of the angles of the polygon is 180°.

D If a polygon is not a triangle, then the sum of the measures of the angles of the polygon is 180°.
6. GRIDDABLE Samantha has 3 more trophies than Martha. Melinda has triple the number of trophies that Samantha has. Altogether the girls have 22 trophies. How many trophies does Melinda have?

Standardized Test Practice at geometryonline.com
7. Use the proof to answer the question below.

Given: $\angle A$ is the complement of $\angle B$;

$$
m \angle B=46
$$

Prove: $m \angle A=44$
$\frac{\text { Statement }}{\text { 1. } A \text { is the complement }}$

Reason

 of $\angle B ; m \angle B=46$2. $m \angle A+m \angle B=90$
3. $m \angle A+46=90$
4. $m \angle A+46-46=$ $90-46$
5. $m \angle A=44$
6. Given
7. Def. of comp. angles
8. Substitution Prop.
4.?
9. Substitution Prop.

What reason can be given to justify
Statement 4?
F Addition Property
G Substitution Property
H Subtraction Property
J Symmetric Property
8. Given: Points A, B, C, and D are collinear, with point B between points A and C and point C between points B and D. Which of the following does not have to be true?
A $A B+B D=A D$
B $\overline{A B} \cong \overline{C D}$
C $\overline{B C} \cong \overline{B C}$
D $B C+C D=B D$
9. A farmer needs to make a 1000 -square-foot rectangular enclosure for her cows. She wants to save money by purchasing the least amount of fencing possible to enclose the area. What whole-number dimensions will require the least amount of fencing?
F 8 ft by 125 ft
G 10 ft by 100 ft
H 20 ft by 50 ft
J 25 ft by 40 ft
10. Given: $\angle E F G$ and $\angle G F H$ are complementary. Which of the following must be true?
A $\overrightarrow{F E} \perp \overrightarrow{F G}$
B $\overrightarrow{F G}$ bisects $\angle E F H$.
C $m \angle E F G+m \angle G F H=180$
D $\angle G F H$ is an acute angle.
11. In the diagram below, $\angle 1 \cong \angle 3$.

Which of the following conclusions does not have to be true?
F $m \angle 1-m \angle 2+m \angle 3=90$
$\mathbf{G} m \angle 1+m \angle 2+m \angle 3=180$
$\mathbf{H} m \angle 1+m \angle 2=m \angle 2+m \angle 3$
J $m \angle 2-m \angle 1=m \angle 2-m \angle 3$

Pre-AP

Record your answer on a sheet of paper. Show your work.
12. Given: $\angle 1$ and $\angle 3$ are vertical angles.

$$
m \angle 1=3 x+5, m \angle 3=2 x+8
$$

Prove: $m \angle 1=14$

13. From a single point in her yard, Marti measures and marks distances of 18 feet and 30 feet for two sides of her garden. What length should the third side of her garden be so that it will form a right angle with the 18 -foot side? If Marti decided to use the same length of fencing in a square configuration, how long would each side of the fence be? Which configuration would provide the largest area for her garden?

NEED EXTRA HELP?

If You Missed Question...
Go to Lesson or Page...

1	2	3	4	5	6	7	8	9	10	11	12	13
$2-1$	$2-2$	$2-5$	$2-4$	$2-3$	781	$2-6$	$2-7$	$1-6$	$1-6$	$2-8$	$2-8$	$1-3$

[^0]: 3 noline
 Personal Tutor at geometryonline.com

